MCP Server on Cloudflare Workers & Azure Functions

MCP Server on Cloudflare Workers & Azure Functions

A deployable MCP server for Cloudflare Workers or Azure Functions that provides example tools (time, echo, math), prompt templates for code assistance, and configuration resources. Enables AI assistants to interact with edge-deployed services through the Model Context Protocol.

Category
访问服务器

README

MCP Server on Cloudflare Workers & Azure Functions

A Model Context Protocol (MCP) server that can be deployed to Cloudflare Workers or Azure Functions. This server provides tools, prompts, and resources that can be accessed via the MCP protocol, enabling AI assistants to interact with your deployed services.

Features

  • 🚀 Deployed on Cloudflare Workers (edge computing)
  • 🔧 Example tools: get_time, echo, add
  • 🌐 HTTP endpoints for health checks and MCP requests
  • 📦 TypeScript with full type safety
  • 🔄 Local development with Wrangler

Prerequisites

  • Node.js 18+ installed
  • A Cloudflare account (free tier works)
  • npm or yarn package manager

Installation

Install dependencies:

npm install

Development

Run the development server locally:

npm run dev

This will start a local Cloudflare Workers environment at http://localhost:8787

Available Endpoints

Health Check

GET http://localhost:8787/health

Returns server status and version information.

MCP Protocol Endpoint

POST http://localhost:8787/mcp
Content-Type: application/json

{
  "method": "tools/list"
}

Available Capabilities

Tools

The server includes three example tools with change notifications:

  1. get_time: Returns the current server time
  2. echo: Echoes back your message
  3. add: Adds two numbers together

Prompts

The server includes five prompt templates with change notifications:

  1. code_review: Get assistance reviewing code
  2. explain_concept: Get explanations of technical concepts
  3. debug_helper: Get help debugging issues
  4. api_design: Get guidance on API design
  5. refactor_suggestion: Get suggestions for refactoring code

Resource Access

The server provides contextual information through resources:

  1. config://server/info: Server metadata and configuration
  2. config://server/status: Current server status and metrics
  3. docs://mcp/getting-started: Getting started guide

Resources support:

  • Subscriptions: Clients can subscribe to resource changes
  • Templates: Parameterized resources (e.g., log://{level}/{message})
  • Multiple MIME types: JSON and Markdown content

Logging

Configurable logging with support for standard log levels:

  • debug, info, notice, warning, error, critical, alert, emergency

Deployment

Option 1: Cloudflare Workers (Recommended for Edge)

1. Login to Cloudflare

npx wrangler login

2. Deploy to Cloudflare Workers

npm run deploy

Your MCP server will be deployed and you'll receive a URL like: https://mcp-server.<your-subdomain>.workers.dev

Option 2: Azure Functions (Recommended for Azure Ecosystem)

For detailed Azure deployment instructions, see AZURE_DEPLOYMENT.md.

Quick Start

# Install dependencies
npm install

# Login to Azure
az login

# Deploy to Azure Functions
npm run deploy:azure

Your MCP server will be available at: https://<your-function-app>.azurewebsites.net

Testing Deployed Server

# Health check
curl https://mcp-server.<your-subdomain>.workers.dev/health

# Test MCP endpoint
curl -X POST https://mcp-server.<your-subdomain>.workers.dev/mcp \
  -H "Content-Type: application/json" \
  -d '{"method": "tools/list"}'

Project Structure

.
├── src/
│   └── index.ts          # Main server implementation
├── .github/
│   └── copilot-instructions.md
├── package.json          # Dependencies and scripts
├── tsconfig.json         # TypeScript configuration
├── wrangler.toml         # Cloudflare Workers config
└── README.md            # This file

Adding New Tools

To add a new tool, edit src/index.ts:

  1. Add tool definition in ListToolsRequestSchema handler
  2. Add tool implementation in CallToolRequestSchema handler

Example:

// In ListToolsRequestSchema handler
{
  name: 'my_tool',
  description: 'Description of what it does',
  inputSchema: {
    type: 'object',
    properties: {
      param1: {
        type: 'string',
        description: 'Parameter description',
      },
    },
    required: ['param1'],
  },
}

// In CallToolRequestSchema handler
case 'my_tool':
  return {
    content: [
      {
        type: 'text',
        text: `Result: ${args.param1}`,
      },
    ],
  };

Configuration

Cloudflare Workers Settings

Edit wrangler.toml to configure:

  • Worker name
  • Compatibility date
  • KV namespaces (for storage)
  • D1 databases (for SQL)
  • Environment variables

Troubleshooting

Build Errors

Check TypeScript types:

npm run types

Deployment Issues

View deployment logs:

npx wrangler tail

Resources

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选