MCP Server POC

MCP Server POC

A proof-of-concept MCP server demonstrating various capabilities including mathematical calculations, URL fetching, system information retrieval, data processing, and file operations.

Category
访问服务器

README

MCP Server POC

A cutting-edge Proof of Concept (POC) implementation of a Model Context Protocol (MCP) server using Python and modern technologies. This server provides tools and resources that can be accessed by AI assistants and other MCP clients.

🏗️ Architecture

The MCP Server follows a modular architecture with clear separation of concerns:

graph TB
    subgraph "Client Layer"
        AI[AI Assistant/Client]
        CLI[CLI Client]
    end
    
    subgraph "Transport Layer"
        STDIO[STDIO Transport]
        HTTP[HTTP Transport - Future]
    end
    
    subgraph "MCP Server Core"
        SERVER[MCP Server Instance]
        HANDLER[Request Handler]
        TOOLS[Tools Registry]
        RESOURCES[Resources Registry]
    end
    
    subgraph "Tool Implementations"
        CALC[Calculate Tool]
        FETCH[Fetch URL Tool]
        SYSINFO[System Info Tool]
        PROCESS[Process Data Tool]
        FILE[File Operations Tool]
    end
    
    subgraph "Resource Providers"
        FILE_RES[File Resources]
        CONFIG_RES[Config Resources]
    end
    
    subgraph "External Services"
        HTTP_API[HTTP APIs]
        FILE_SYS[File System]
    end
    
    AI --> STDIO
    CLI --> STDIO
    STDIO --> SERVER
    SERVER --> HANDLER
    HANDLER --> TOOLS
    HANDLER --> RESOURCES
    TOOLS --> CALC
    TOOLS --> FETCH
    TOOLS --> SYSINFO
    TOOLS --> PROCESS
    TOOLS --> FILE
    RESOURCES --> FILE_RES
    RESOURCES --> CONFIG_RES
    FETCH --> HTTP_API
    FILE --> FILE_SYS
    FILE_RES --> FILE_SYS

Workflow Diagram

sequenceDiagram
    participant Client
    participant Transport
    participant Server
    participant Tool
    participant Resource
    
    Client->>Transport: Initialize Connection
    Transport->>Server: Connection Established
    Client->>Server: List Tools Request
    Server->>Client: Tools List Response
    Client->>Server: List Resources Request
    Server->>Client: Resources List Response
    Client->>Server: Call Tool Request
    Server->>Tool: Execute Tool
    Tool->>Server: Tool Result
    Server->>Client: Tool Response
    Client->>Server: Read Resource Request
    Server->>Resource: Fetch Resource
    Resource->>Server: Resource Data
    Server->>Client: Resource Response

🚀 Features

  • Modern Python Stack: Built with Python 3.10+ and async/await patterns
  • Type Safety: Full type hints with Pydantic models
  • High Performance: Uses uvloop for enhanced async performance
  • Comprehensive Tools: Multiple example tools demonstrating various capabilities
  • Resource Management: File and configuration resource providers
  • Testing: Complete test suite with pytest
  • Configuration: Environment-based configuration management

📋 Prerequisites

  • Python 3.10 or higher
  • pip or poetry for package management
  • Git (for cloning the repository)

🛠️ Installation

Step 1: Clone the Repository

git clone <repository-url>
cd MCP-server

Step 2: Create Virtual Environment

# Using venv
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Or using conda
conda create -n mcp-server python=3.10
conda activate mcp-server

Step 3: Install Dependencies

# Using pip
pip install -r requirements.txt

# For development (includes testing tools)
pip install -r requirements-dev.txt

# Or using poetry (if you prefer)
poetry install

Step 4: Configure Environment

# Copy example environment file
cp .env.example .env

# Edit .env file with your settings (optional)
# nano .env

🧪 Testing

Run All Tests

pytest

Run Tests with Coverage

pytest --cov=src --cov-report=html

Run Specific Test

pytest tests/test_server.py::test_calculate_tool -v

🎯 Usage

Running the Server

Method 1: Direct Python Execution

python -m src.server

Method 2: Using the Script

python scripts/run_server.py

Method 3: As a Module

python -m src.server

Example Client Usage

Run the example client to see the server in action:

python examples/example_client.py

Available Tools

The server provides the following tools:

  1. calculate: Perform mathematical calculations

    • Input: {"expression": "2 + 2"}
    • Output: Calculation result
  2. fetch_url: Fetch content from URLs

    • Input: {"url": "https://example.com", "method": "GET"}
    • Output: HTTP response content
  3. get_system_info: Get system information

    • Input: {}
    • Output: System details and environment variables
  4. process_data: Process and transform data

    • Input: {"data": "hello", "operation": "uppercase"}
    • Operations: reverse, uppercase, lowercase, count
  5. write_file: Write content to files

    • Input: {"filepath": "output.txt", "content": "Hello World"}
    • Output: Confirmation message

Available Resources

  1. Example File: file://example.txt - Example file resource
  2. Server Configuration: config://server-config - Current server configuration

📁 Project Structure

MCP-server/
├── src/
│   ├── __init__.py          # Package initialization
│   ├── server.py            # Main MCP server implementation
│   └── config.py            # Configuration management
├── tests/
│   ├── __init__.py
│   └── test_server.py       # Unit tests
├── examples/
│   └── example_client.py    # Example client implementation
├── scripts/
│   └── run_server.py        # Server runner script
├── .env.example             # Example environment configuration
├── .gitignore               # Git ignore rules
├── pyproject.toml           # Project metadata and dependencies
├── pytest.ini              # Pytest configuration
├── requirements.txt         # Production dependencies
├── requirements-dev.txt     # Development dependencies
└── README.md               # This file

🔧 Configuration

The server can be configured using environment variables:

  • MCP_SERVER_NAME: Server name (default: mcp-server-poc)
  • MCP_SERVER_VERSION: Server version (default: 0.1.0)
  • LOG_LEVEL: Logging level (default: INFO)
  • ENABLE_METRICS: Enable metrics collection (default: true)

🧩 Technology Stack

  • MCP SDK: Official Model Context Protocol SDK for Python
  • Pydantic: Data validation and settings management
  • httpx: Modern async HTTP client
  • aiofiles: Async file operations
  • uvloop: High-performance event loop
  • pytest: Testing framework
  • python-dotenv: Environment variable management

🔍 Development

Code Formatting

# Format code with black
black src/ tests/ examples/

# Lint with ruff
ruff check src/ tests/

# Type checking with mypy
mypy src/

Adding New Tools

  1. Add tool definition in list_tools() function
  2. Implement tool logic in call_tool() function
  3. Add tests in tests/test_server.py

Example:

# In list_tools()
Tool(
    name="my_new_tool",
    description="Description of my tool",
    inputSchema={
        "type": "object",
        "properties": {
            "param": {"type": "string"}
        },
        "required": ["param"]
    }
)

# In call_tool()
elif name == "my_new_tool":
    param = arguments.get("param")
    # Your tool logic here
    return [TextContent(type="text", text=f"Result: {result}")]

🐛 Troubleshooting

Common Issues

  1. Import Errors: Ensure all dependencies are installed

    pip install -r requirements.txt
    
  2. Python Version: Ensure Python 3.10+ is being used

    python --version
    
  3. Virtual Environment: Make sure virtual environment is activated

    source venv/bin/activate
    
  4. Permission Errors: Check file permissions for write operations

📝 License

See LICENSE file for details.

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

📚 Additional Resources

🎉 Next Steps

  • Add more sophisticated tools (database queries, API integrations)
  • Implement authentication and authorization
  • Add metrics and monitoring
  • Support for streaming responses
  • WebSocket transport support
  • Resource caching and optimization

Note: This is a POC project. For production use, consider adding:

  • Proper error handling and logging
  • Security measures (authentication, input validation)
  • Rate limiting
  • Comprehensive monitoring
  • Documentation generation
  • CI/CD pipelines

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选