MCP Server Proto-OKN

MCP Server Proto-OKN

A Model Context Protocol server that provides tools for querying SPARQL endpoints, with specialized support for Proto-OKN knowledge graphs hosted on the FRINK platform.

Category
访问服务器

README

MCP Server Proto-OKN

A Model Context Protocol (MCP) server that provides tools for querying SPARQL endpoints, with specialized support for Proto-OKN (Prototype Open Knowledge Network) knowledge graphs hosted on the FRINK platform.

Features

  • FRINK Integration: Automatic detection and documentation linking for FRINK-hosted knowledge graphs
  • Proto-OKN Support: Optimized for querying knowledge graphs in the Proto-OKN ecosystem including:
    • SPOKE (Scalable Precision Medicine Open Knowledge Engine)
    • BioBricks ICE (Chemical safety and cheminformatics)
    • DREAM-KG (Addressing homelessness with explainable AI)
    • SAWGraph (Safe Agricultural Products and Water monitoring)
    • And many other Proto-OKN knowledge graphs
  • Flexible Configuration: Support for both FRINK and custom SPARQL endpoints
  • Automatic Documentation: Registry links for supported knowledge graphs

Installation

Prerequisites

  1. Install VS Code Insiders (required for MCP support)

    Download and install VS Code Insiders from https://code.visualstudio.com/insiders/

    VS Code Insiders is needed because it includes the latest MCP (Model Context Protocol) features.

  2. Install GitHub Copilot extension (required for MCP integration)

    • Open VS Code Insiders
    • Install the GitHub Copilot extension from the marketplace
    • Sign in with your GitHub account that has Copilot access
    • Note: You need an active GitHub Copilot subscription to use MCP features

    MCP servers integrate with VS Code through the Copilot Chat interface.

  3. Install uv (Python package manager)

    # macOS/Linux
    curl -LsSf https://astral.sh/uv/install.sh | sh
    
    # Windows
    powershell -c "irm https://astral.sh/uv/install.ps1 | iex"
    
    # Or via pip
    pip install uv
    

Setup Instructions

  1. Clone and setup the project

    git clone https://github.com/sbl-sdsc/mcp-proto-okn.git
    cd mcp-proto-okn
    uv sync
    
  2. Configure the MCP servers

    This project includes a pre-configured .vscode/mcp.json file with multiple Proto-OKN knowledge graph endpoints. You need to update the commands to use the new mcp-server-protookn:

    Edit .vscode/mcp.json and update the server configurations:

    {
      "servers": {
        "mcp-spoke-sparql": {
          "command": "uv",
          "args": ["run", "python", "-m", "mcp_server_protookn.server", "--endpoint", "https://frink.apps.renci.org/spoke/sparql"]
        },
        "mcp-dreamkg-sparql": {
          "command": "uv",
          "args": ["run", "python", "-m", "mcp_server_protookn.server", "--endpoint", "https://frink.apps.renci.org/dreamkg/sparql"]
        }
      }
    }
    

    The existing file contains configurations for all major Proto-OKN knowledge graphs. You can enable/disable specific servers by adding or removing them from the configuration.

  3. Start using the MCP server

    • Open VS Code Insiders
    • Open a new chat window
    • The MCP servers should automatically connect and provide access to the knowledge graphs

Quick Start: Query a Knowledge Graph

Once everything is set up, you can start querying knowledge graphs through the VS Code chat interface:

Example prompts to try:

  1. Explore the SPOKE knowledge graph structure:

    What types of entities are available in the SPOKE knowledge graph?
    
  2. Query that combines multiple entity types:

    Antibiotic contamination can contribute to antimicrobial resistance. Find locations with antibiotic contamination.
    
  3. Query across multiple KGs:

    What type of data is available for perfluorooctanoic acid in SPOKE, BioBricks, and SAWGraph?
    

The chat interface will use the MCP server to execute SPARQL queries against the configured endpoints and return structured results.

Alternative Installation Methods

Using uvx (standalone execution)

uvx mcp-server-protookn --endpoint https://frink.apps.renci.org/spoke/sparql

Usage

Command Line Parameters

The MCP server accepts the following command line arguments:

Required:

  • --endpoint: SPARQL endpoint URL (e.g., https://frink.apps.renci.org/spoke/sparql)

Optional:

  • --description: Custom description for the SPARQL endpoint (automatically generated for FRINK endpoints)

Command Line

# FRINK endpoint (automatic documentation linking)
uvx mcp-server-protookn --endpoint https://frink.apps.renci.org/spoke/sparql

# Custom endpoint with description
uvx mcp-server-protookn --endpoint https://example.com/sparql --description "Custom SPARQL endpoint"

Tool: query

Execute a SPARQL query against the configured endpoint.

Parameters:

  • query_string: A valid SPARQL query string
  • description: Custom description for the SPARQL endpoint (automatically generated for FRINK endpoints)

Returns:

  • The query results in JSON format

Links

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选