MCP Server Template

MCP Server Template

A scaffold project for building FastAPI-based Model Context Protocol servers with automatic tool discovery and router capabilities.

Category
访问服务器

README

MCP Server Template

A scaffold project for building MCP (Model Context Protocol) servers using oxsci-oma-mcp.

Features

  • FastAPI-based MCP server
  • Built-in tool router with automatic discovery
  • Example tool implementation
  • Docker support
  • CI/CD workflow for deployment (template ready)

Quick Start

1. Setup

# Clone this repository
git clone https://github.com/your-org/your-mcp-server.git
cd your-mcp-server

# Configure CodeArtifact access
./entrypoint-dev.sh

# Install dependencies
poetry install

2. Run Locally

# Start the server
poetry run python -m app.core.main

# Or with uvicorn directly
poetry run uvicorn app.core.main:app --host 0.0.0.0 --port 8060 --reload

The server will start at http://localhost:8060

3. Test the API

Check server status:

curl http://localhost:8060/

Discover available tools:

curl http://localhost:8060/tools/discover

Execute a tool:

curl -X POST http://localhost:8060/tools/example_tool \
  -H "Content-Type: application/json" \
  -d '{
    "arguments": {
      "input_text": "Hello World",
      "uppercase": true
    },
    "context": {
      "user_id": "user123"
    }
  }'

Project Structure

.
├── app/
│   ├── core/
│   │   ├── __init__.py
│   │   ├── config.py          # Configuration
│   │   └── main.py            # FastAPI application
│   └── tools/
│       ├── __init__.py         # Import tools here
│       └── example_tool.py     # Example tool implementation
├── tests/                      # Test files
├── .github/
│   └── workflows/
│       └── docker-builder.yml  # CI/CD workflow (template)
├── Dockerfile                  # Docker configuration
├── pyproject.toml             # Poetry dependencies
├── entrypoint-dev.sh          # CodeArtifact setup script
└── README.md

Creating New Tools

1. Create a new tool file in app/tools/

# app/tools/my_tool.py
from fastapi import Depends
from pydantic import BaseModel, Field
from oxsci_oma_mcp import oma_tool, require_context, IMCPToolContext


class MyToolRequest(BaseModel):
    param1: str = Field(..., description="Parameter description")


class MyToolResponse(BaseModel):
    result: str = Field(..., description="Result description")


@oma_tool(
    description="My custom tool",
    version="1.0.0",
)
async def my_tool(
    request: MyToolRequest,
    context: IMCPToolContext = Depends(require_context),
) -> MyToolResponse:
    # Your tool implementation
    result = f"Processed: {request.param1}"
    return MyToolResponse(result=result)

2. Import in app/tools/__init__.py

from . import my_tool  # noqa: F401

3. Restart the server

The tool will be automatically discovered and available at /tools/my_tool

Configuration

Edit app/core/config.py to customize:

  • Service name
  • Environment variables
  • External service URLs

For production deployments, use environment variables or AWS SSM parameters.

Testing

# Run all tests
poetry run pytest

# Run with coverage
poetry run pytest --cov=app --cov-report=html

# Run specific test types
poetry run pytest -m unit
poetry run pytest -m integration

Docker

Build

docker build -t my-mcp-server:latest .

Run

docker run -p 8060:8060 \
  -e ENV=production \
  -e SERVICE_NAME=my-mcp-server \
  my-mcp-server:latest

Deployment

The project includes a GitHub Actions workflow template for automated deployment:

  1. Update pyproject.toml with your service name
  2. Configure AWS credentials in GitHub secrets
  3. Push to main branch or create a tag to trigger deployment
# Deploy using gh cli
gh workflow run docker-builder.yml \
  --field deploy_to_test=true \
  --field pump_version=patch

Integration with OMA Core

If you're building tools for an OMA agent service:

  1. Deploy your MCP server
  2. Register it in the agent's MCP configuration
  3. Tools will be automatically discovered and available to agents

Example MCP configuration:

mcp_servers:
  my_mcp_server:
    enabled: true
    base_url: "https://my-mcp-server.example.com"
    description: "Custom tools for my agent"

Development Tips

Local Development with oxsci-oma-mcp

To develop against a local version of oxsci-oma-mcp:

  1. Edit pyproject.toml:
[tool.poetry.group.dev.dependencies]
oxsci-oma-mcp = { path = "../oxsci-oma-mcp", develop = true }
  1. Run:
poetry lock
poetry install --with dev

External Service Integration

Use oxsci-shared-core for calling other services:

poetry add oxsci-shared-core --source oxsci-ca
from oxsci_shared_core.auth import ServiceClient

service_client = ServiceClient("my-mcp-server")
data = await service_client.call_service(
    target_service_url="https://data-service.example.com",
    method="GET",
    endpoint="/data/items"
)

Related Projects

License

Proprietary - OxSci.AI

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选