MCP Server with Docker
A project that integrates Model Control Protocol with OpenAI's API, allowing OpenAI to access and utilize tools exposed by a dockerized MCP server.
README
MCP Server with Docker
This project demonstrates how to integrate the Model Control Protocol (MCP) with OpenAI's API, enabling OpenAI to access and use tools exposed by an MCP server running in Docker.
Prerequisites
- Docker installed on your system
- Git (to clone the repository)
Project Structure
server.py: The MCP server implementation with a toolclient.py: A client that connects to the server and calls the agentDockerfile: Instructions for building the Docker imagerequirements.txt: Python dependencies for the project
Data Flow Explanation
- User Query: The user sends a query to the system (e.g., "What is our company's vacation policy?")
- OpenAI API: OpenAI receives the query and available tools from the MCP server
- Tool Selection: OpenAI decides which tools to use based on the query
- MCP Client: The client receives OpenAI's tool call request and forwards it to the MCP server
- MCP Server: The server executes the requested tool (e.g., retrieving knowledge base data)
- Response Flow: The tool result flows back through the MCP client to OpenAI
- Final Response: OpenAI generates a final response incorporating the tool data
Running with Docker
Step 1: Build the Docker image
docker build -t mcp-server .
Step 2: Run the Docker container
docker run -p 8050:8050 mcp-server
This will start the MCP server inside a Docker container and expose it on port 8050.
Running the Client
Once the server is running, you can run the client in a separate terminal:
python client.py
The client will connect to the server, list available tools, and call the agent to answer the query.
Troubleshooting
If you encounter connection issues:
-
Check if the server is running: Make sure the Docker container is running with
docker ps. -
Verify port mapping: Ensure the port is correctly mapped with
docker psor by checking the output of thedocker runcommand. -
Check server logs: View the server logs with
docker logs <container_id>to see if there are any errors. -
Host binding: The server is configured to bind to
0.0.0.0instead of127.0.0.1to make it accessible from outside the container. If you're still having issues, you might need to check your firewall settings. -
Network issues: If you're running Docker on a remote machine, make sure the port is accessible from your client machine.
Notes
- The server is configured to use SSE (Server-Sent Events) transport and listens on port 8050.
- The client connects to the server at
http://localhost:8050/sse. - Make sure the server is running before starting the client.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。