MCP Server with External Tools
Enables AI models to access external services including weather data, file system operations, and SQLite database interactions through a standardized JSON-RPC interface. Features production-ready architecture with security, rate limiting, and comprehensive error handling.
README
MCP (Model Context Protocol) Server
A production-ready implementation of a Model Context Protocol (MCP) server that provides AI models with access to external tools and services through a standardized JSON-RPC interface.
Features
- JSON-RPC 2.0 over HTTP with WebSocket support
- Modular Architecture for easy extension
- Built-in Tools:
- Weather API integration
- Secure file system operations
- SQLite database access
- Production-Ready:
- Comprehensive error handling
- Logging with Winston
- Configuration management
- Input validation
- Security best practices
Prerequisites
- Node.js 16+ or Docker
- npm or yarn
- SQLite3 (for database operations)
- OpenWeatherMap API key (for weather functionality)
Installation
-
Clone the repository:
git clone https://github.com/yourusername/mcp-server.git cd mcp-server -
Install dependencies:
npm install -
Copy the example environment file and update with your settings:
cp .env.example .env -
Update the
.envfile with your configuration.
Configuration
Edit the .env file to configure the server:
# Server Configuration
PORT=3000
NODE_ENV=development
# Logging
LOG_LEVEL=info
LOG_FILE=logs/mcp-server.log
# Weather API (OpenWeatherMap)
OPENWEATHER_API_KEY=your_api_key_here
# Database
DB_PATH=./data/mcp-db.sqlite
# Security
MAX_REQUEST_SIZE=1mb
RATE_LIMIT_WINDOW_MS=900000 # 15 minutes
RATE_LIMIT_MAX_REQUESTS=100
# File System
SANDBOX_DIR=./sandbox
MAX_FILE_SIZE_MB=10
Usage
Starting the Server
# Development mode with hot-reload
npm run dev
# Production mode
npm start
# Using Docker
docker-compose up --build
Making Requests
The server exposes a JSON-RPC 2.0 endpoint at POST /rpc.
Example request:
{
"jsonrpc": "2.0",
"method": "weather.getCurrent",
"params": {
"city": "London"
},
"id": 1
}
Example response:
{
"jsonrpc": "2.0",
"result": {
"location": {
"name": "London",
"country": "GB",
"coord": {
"lat": 51.5074,
"lon": -0.1278
},
"timezone": 0,
"sunrise": "2023-05-01T04:45:12.000Z",
"sunset": "2023-05-01T19:53:12.000Z"
},
"weather": {
"main": "Clear",
"description": "clear sky",
"icon": "01d",
"temperature": {
"current": 15.5,
"feelsLike": 14.8,
"min": 13.2,
"max": 17.1
},
"pressure": 1012,
"humidity": 72,
"visibility": 10,
"wind": {
"speed": 3.6,
"deg": 200
},
"clouds": 0
},
"lastUpdated": "2023-05-01T12:00:00.000Z"
},
"id": 1
}
Available Methods
Weather
weather.getCurrent(params: { city?: string, lat?: number, lon?: number, units?: string, lang?: string })Get current weather for a location by city name or coordinates.
File System
-
file.read(params: { path: string, encoding?: string })Read a file from the sandbox directory. -
file.write(params: { path: string, content: string, encoding?: string, createDir?: boolean, append?: boolean })Write content to a file in the sandbox directory.
Database
-
database.query(params: { sql: string, params?: any[], readOnly?: boolean })Execute a SQL query against the database. -
database.transaction(queries: Array<{ sql: string, params?: any[] }>)Execute multiple SQL queries in a transaction.
Security
- All file system operations are sandboxed to the configured
SANDBOX_DIR - SQL injection prevention measures are in place
- Request size limits to prevent DoS attacks
- Rate limiting to prevent abuse
- Environment variables for sensitive configuration
Testing
# Run tests
npm test
# Run tests with coverage
npm run test:coverage
Deployment
Docker
docker build -t mcp-server .
docker run -p 3000:3000 --env-file .env mcp-server
PM2 (Production)
# Install PM2 globally
npm install -g pm2
# Start the server
pm2 start dist/index.js --name "mcp-server"
# Save process list for auto-start on reboot
pm2 save
pm2 startup
License
MIT
Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。