MCP Server with LangChain and AI Tools
A multi-tool AI assistant system that uses Model Context Protocol to connect language models with various tools, including math calculations and weather information.
README
🧠 MCP Server with LangChain and AI Tools
This project demonstrates how to build a multi-tool AI assistant using the Model Context Protocol (MCP), LangChain, and Groq’s Qwen model. It includes:
- 📐 A local Math MCP Server
- 🌤️ A simulated Weather MCP Server
- 🤖 A conversational AI agent (MCP client) that talks to both
🧰 Features
- Uses LangChain MCP Adapters to connect tools
- Powered by Groq's Qwen LLM
- Handles local and remote tool servers via MCP
- Interactive CLI chat with tool usage detection
🏁 Prerequisites
- Python >= 3.11
uvfor project/environment management (https://github.com/astral-sh/uv)- Internet connection for loading LLM (Groq)
⚙️ Setup Instructions
1. Create Project
mkdir mcp_project
cd mcp_project
uv init
Set Python version in .python-version and pyproject.toml to >=3.11
2. Create Virtual Environment
uv venv
source .venv/Scripts/activate
3. Add Dependencies
Create a requirements.txt file:
langchain-mcp-adapters
langchain-groq
langgraph
mcp
Install them
uv add -r requirements.txt
Project Structure
mcp_project/ │ ├── math_server.py # MCP server for math tools ├── weather_server.py # MCP server for weather API simulation ├── client.py # MCP client with AI agent ├── requirements.txt ├── .python-version └── .env # For storing Groq API key (GROQ_API_KEY)
How to Run
1. Run the Weather Server
python weather_server.py
2. Run the Client (Automatically runs math server as sub process)
python client.py
Example Conversation
You: What is the output of 2*3/(4-2)
AI: The result is 3.0
You: What is the weather in New York?
AI: The current weather in New York is sunny.
You: thanks
AI: You're welcome! 😊
Note
The weather server is simulated. Replace it with real API logic if needed.
You can add more MCP servers for documents, search, DBs, etc.
Use .env to store your GROQ_API_KEY.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。