
MCP Server with LLM Integration
Enables chat with multiple LLM providers (OpenAI and Anthropic) while maintaining persistent conversation memory. Provides extensible tool framework for various operations including echo functionality and conversation storage/retrieval.
README
MCP Server
A Model Context Protocol (MCP) server implementation with LLM integration and chat memory capabilities.
Features
- MCP Server: Full Model Context Protocol server implementation
- LLM Integration: Support for OpenAI and Anthropic models
- Chat Memory: Persistent conversation storage and retrieval
- Tool System: Extensible tool framework for various operations
Installation
- Clone this repository:
git clone <repository-url>
cd MCP
- Install dependencies:
pip install -r requirements.txt
Or using the development environment:
pip install -e .[dev]
Configuration
Set up your API keys as environment variables:
export OPENAI_API_KEY="your-openai-api-key"
export ANTHROPIC_API_KEY="your-anthropic-api-key"
Or create a .env
file:
OPENAI_API_KEY=your-openai-api-key
ANTHROPIC_API_KEY=your-anthropic-api-key
Usage
Running the MCP Server
Start the server using the command line:
python -m mcp
Or run directly:
python mcp.py
Available Tools
The server provides the following tools:
Echo Tool
Simple echo functionality for testing.
{
"name": "echo",
"arguments": {
"text": "Hello, world!"
}
}
Chat Memory Tools
Store Memory
{
"name": "store_memory",
"arguments": {
"conversation_id": "conv_123",
"content": "User preferences: dark mode enabled",
"metadata": {"type": "preference"}
}
}
Get Memory
{
"name": "get_memory",
"arguments": {
"conversation_id": "conv_123"
}
}
LLM Chat Tool
{
"name": "llm_chat",
"arguments": {
"message": "What is the capital of France?",
"model": "gpt-3.5-turbo"
}
}
Supported Models
OpenAI Models:
- gpt-3.5-turbo
- gpt-4
- gpt-4-turbo
- gpt-4o
Anthropic Models:
- claude-3-haiku-20240307
- claude-3-sonnet-20240229
- claude-3-opus-20240229
Development
Running Tests
pytest
Code Formatting
black .
isort .
Type Checking
mypy .
Architecture
Components
- mcp.py: Main MCP server implementation and tool registration
- llmintegrationsystem.py: LLM provider integration and chat completions
- chatmemorysystem.py: Persistent conversation storage with SQLite
Database Schema
The chat memory system uses SQLite with two main tables:
memories
: Individual conversation messages and metadataconversation_summaries
: Conversation overviews and statistics
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests for new functionality
- Submit a pull request
License
MIT License - see LICENSE file for details.
Troubleshooting
Common Issues
API Key Errors Ensure your API keys are properly set in environment variables.
Database Permissions
The server creates a chat_memory.db
file in the current directory. Ensure write permissions.
Port Conflicts The MCP server uses stdio communication by default. No port configuration needed.
Logging
Enable debug logging:
PYTHONPATH=. python -c "import logging; logging.basicConfig(level=logging.DEBUG); import mcp; mcp.main()"
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。