MCP Server with OpenAI Integration
Production-ready MCP server that integrates OpenAI API with extensible tool support, enabling dynamic plugin loading and knowledge search capabilities through multiple interfaces including CLI and browser UI.
README
MCP Server with OpenAI Integration
A production-ready Model Context Protocol server implemented in TypeScript. The server provides:
- OpenAI connectivity demo – prove the API key works end-to-end via
npm run demo:openai. - MCP tool demo – spawn the server and call tools through an MCP client using
npm run demo:tool. - Extensibility demo – hot-load third-party tools from disk via
npm run demo:extorMCP_TOOL_MODULES. - Browser UI demo – launch an interactive web page that exercises the OpenAI call and knowledge-search tool with
npm run demo:ui.
The codebase focuses on clean abstractions, schema validation, and commercial readiness (logging, config safety, tests).
Requirements
- Node.js 18+ (Node 20 recommended to avoid optional engine warnings).
- npm 9+.
- A valid
OPENAI_API_KEYwith access to the desired models.
Quick start
npm install
cp .env.example .env # fill in OPENAI_API_KEY
npm run build
npm start # runs the compiled MCP server on stdio
To run the TypeScript entry directly during development:
npm run dev
Environment variables
| Variable | Description |
|---|---|
OPENAI_API_KEY |
Required. API key for OpenAI. |
OPENAI_BASE_URL |
Override base URL for Azure/OpenAI proxies. |
OPENAI_TIMEOUT_MS |
Timeout (ms) applied to OpenAI API calls. Defaults to 20000. |
MCP_SERVER_NAME |
Name advertised to MCP clients. |
LOG_LEVEL |
fatal → trace. Defaults to info. |
MCP_TOOL_MODULES |
Comma-separated absolute paths to extra tool modules (see extensibility demo). |
MCP_PORT |
Reserved for future transports; defaults to 7337. |
UI_DEMO_PORT |
Optional port for the browser UI demo. Defaults to 4399. |
Demo workflows
1. OpenAI connectivity
Verifies credentials and model access:
npm run demo:openai
Outputs the model reply plus token usage metrics via Pino logs.
2. MCP tool invocation
Spawns the compiled MCP server (node dist/index.js) and connects with the official MCP client SDK:
npm run build
npm run demo:tool
Set MCP_DEMO_SERVER_COMMAND / MCP_DEMO_SERVER_ARGS if you want the client to launch a different command (for example npx tsx src/index.ts). The script lists tools and invokes knowledge_search end-to-end.
3. Extensibility via plugins
Ships with src/examples/plugins/stockQuoteTool.ts. After npm run build the compiled module lives at dist/examples/plugins/stockQuoteTool.js.
Load it either through the demo script:
npm run build
npm run demo:ext
or by setting an environment variable before starting the server:
export MCP_TOOL_MODULES=$(pwd)/dist/examples/plugins/stockQuoteTool.js
npm start
The server automatically registers every tool exported from the referenced module(s).
4. Browser UI walkthrough
Launch a lightweight HTTP server that serves public/ui-demo.html:
npm run demo:ui
Visit http://localhost:4399 (or UI_DEMO_PORT) to:
- Send prompts directly to OpenAI using the configured API key.
- Call the built-in
knowledge_searchtool through a REST façade.
Responses render inline so you can validate both flows without leaving the browser.
Tooling
- TypeScript strict mode with
tscfor builds. - Vitest for unit testing (
npm test). - ESLint + Prettier for linting/formatting (
npm run lint,npm run format). - Pino structured logging with pretty printing in development.
Test & quality gates
npm run lint
npm test
Coverage reports are emitted under coverage/ via V8 instrumentation.
Project structure
src/config/env.ts– centralized, validated environment loading.src/clients/openaiClient.ts– resilient OpenAI wrapper implementing theLLMProvidercontract.src/mcp/registry.ts– tool lifecycle management + dynamic module loading.src/mcp/server.ts– MCP server wiring, tool adapters, and plugin APIs.src/demos/*– runnable scripts covering the three required scenarios.src/examples/plugins/*– sample plugin(s) for extensibility demos.tests/*– Vitest coverage for critical units.
For a deeper architectural overview, read docs/architecture.md.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。