mcp-skills
Provides dynamic, context-aware code assistant skills through hybrid RAG (vector + knowledge graph), enabling runtime skill discovery, automatic toolchain-based recommendations, and on-demand loading from multiple git repositories.
README
mcp-skills
Dynamic RAG-powered skills for code assistants via Model Context Protocol (MCP)
mcp-skills is a standalone Python application that provides intelligent, context-aware skills to code assistants through hybrid RAG (vector + knowledge graph). Unlike static skills that load at startup, mcp-skills enables runtime skill discovery, automatic recommendations based on your project's toolchain, and dynamic loading optimized for your workflow.
Key Features
- 🚀 Zero Config:
mcp-skills setuphandles everything automatically - 🧠 Intelligent: Auto-detects your project's toolchain (Python, TypeScript, Rust, Go, etc.)
- 🔍 Dynamic Discovery: Vector similarity + knowledge graph for better skill finding
- 📦 Multi-Source: Pulls skills from multiple git repositories
- ⚡ On-Demand Loading: Skills loaded when needed, not all at startup
- 🔌 MCP Native: First-class Model Context Protocol integration
Installation
From PyPI
pip install mcp-skills
From Source
git clone https://github.com/yourusername/mcp-skills.git
cd mcp-skills
pip install -e .
Quick Start
1. Setup
Run the interactive setup wizard to configure mcp-skills for your project:
mcp-skills setup
This will:
- Detect your project's toolchain
- Clone relevant skill repositories
- Build vector + knowledge graph indices
- Configure MCP server integration
- Validate the setup
2. Start the MCP Server
mcp-skills serve
The server will start and expose skills to your code assistant via MCP protocol.
3. Use with Claude Code
Skills are automatically available in Claude Code. Try:
- "What testing skills are available for Python?"
- "Show me debugging skills"
- "Recommend skills for my project"
Project Structure
~/.mcp-skills/
├── config.yaml # User configuration
├── repos/ # Cloned skill repositories
│ ├── anthropics/skills/
│ ├── obra/superpowers/
│ └── custom-repo/
├── indices/ # Vector + KG indices
│ ├── vector_store/
│ └── knowledge_graph/
└── metadata.db # SQLite metadata
Architecture
mcp-skills uses a hybrid RAG approach combining:
Vector Store (ChromaDB):
- Fast semantic search over skill descriptions
- Embeddings generated with sentence-transformers
- Persistent local storage with minimal configuration
Knowledge Graph (NetworkX):
- Skill relationships and dependencies
- Category and toolchain associations
- Related skill discovery
Toolchain Detection:
- Automatic detection of programming languages
- Framework and build tool identification
- Intelligent skill recommendations
Configuration
Global Configuration (~/.mcp-skills/config.yaml)
repositories:
- url: https://github.com/anthropics/skills.git
priority: 100
auto_update: true
vector_store:
backend: chromadb
embedding_model: all-MiniLM-L6-v2
server:
transport: stdio
log_level: info
Project Configuration (.mcp-skills.yaml)
project:
name: my-project
toolchain:
primary: Python
frameworks: [Flask, SQLAlchemy]
auto_load:
- systematic-debugging
- test-driven-development
CLI Commands
# Setup and Configuration
mcp-skills setup # Interactive setup wizard
mcp-skills config # Show configuration
# Server
mcp-skills serve # Start MCP server (stdio)
mcp-skills serve --http # Start HTTP server
mcp-skills serve --dev # Development mode (auto-reload)
# Skills Management
mcp-skills search "testing" # Search skills
mcp-skills list # List all skills
mcp-skills info pytest-skill # Show skill details
mcp-skills recommend # Get recommendations
# Repositories
mcp-skills repo add <url> # Add repository
mcp-skills repo list # List repositories
mcp-skills repo update # Update all repositories
# Indexing
mcp-skills index # Rebuild indices
mcp-skills index --incremental # Index only new skills
# Utilities
mcp-skills health # Health check
mcp-skills stats # Usage statistics
MCP Tools
mcp-skills exposes these tools to code assistants:
- search_skills: Natural language skill search
- get_skill: Load full skill instructions by ID
- recommend_skills: Get recommendations for current project
- list_categories: List all skill categories
- update_repositories: Pull latest skills from git
Development
Requirements
- Python 3.11+
- Git
Setup Development Environment
git clone https://github.com/yourusername/mcp-skills.git
cd mcp-skills
pip install -e ".[dev]"
Run Tests
make quality
Linting and Formatting
make lint-fix
Documentation
Architecture
See docs/architecture/README.md for detailed architecture design.
Skills Collections
See docs/skills/RESOURCES.md for a comprehensive index of skill repositories compatible with mcp-skills, including:
- Official Anthropic skills
- Community collections (obra/superpowers, claude-mpm-skills, etc.)
- Toolchain-specific skills (Python, TypeScript, Rust, Go, Java)
- Operations & DevOps skills
- MCP servers that provide skill-like capabilities
Contributing
Contributions welcome! Please read our contributing guidelines first.
- Fork the repository
- Create a feature branch
- Make your changes
- Run
make qualityto ensure tests pass - Submit a pull request
License
MIT License - see LICENSE for details.
Acknowledgments
- Built on the Model Context Protocol
- Inspired by Claude Skills
- Uses ChromaDB for vector search
- Embeddings via sentence-transformers
Links
- Documentation: GitHub Wiki
- Issue Tracker: GitHub Issues
- MCP Registry: MCP Servers
Status: 🚧 Early development - MVP in progress
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。