mcp-skills

mcp-skills

Provides dynamic, context-aware code assistant skills through hybrid RAG (vector + knowledge graph), enabling runtime skill discovery, automatic toolchain-based recommendations, and on-demand loading from multiple git repositories.

Category
访问服务器

README

mcp-skills

Dynamic RAG-powered skills for code assistants via Model Context Protocol (MCP)

mcp-skills is a standalone Python application that provides intelligent, context-aware skills to code assistants through hybrid RAG (vector + knowledge graph). Unlike static skills that load at startup, mcp-skills enables runtime skill discovery, automatic recommendations based on your project's toolchain, and dynamic loading optimized for your workflow.

Key Features

  • 🚀 Zero Config: mcp-skills setup handles everything automatically
  • 🧠 Intelligent: Auto-detects your project's toolchain (Python, TypeScript, Rust, Go, etc.)
  • 🔍 Dynamic Discovery: Vector similarity + knowledge graph for better skill finding
  • 📦 Multi-Source: Pulls skills from multiple git repositories
  • ⚡ On-Demand Loading: Skills loaded when needed, not all at startup
  • 🔌 MCP Native: First-class Model Context Protocol integration

Installation

From PyPI

pip install mcp-skills

From Source

git clone https://github.com/yourusername/mcp-skills.git
cd mcp-skills
pip install -e .

Quick Start

1. Setup

Run the interactive setup wizard to configure mcp-skills for your project:

mcp-skills setup

This will:

  • Detect your project's toolchain
  • Clone relevant skill repositories
  • Build vector + knowledge graph indices
  • Configure MCP server integration
  • Validate the setup

2. Start the MCP Server

mcp-skills serve

The server will start and expose skills to your code assistant via MCP protocol.

3. Use with Claude Code

Skills are automatically available in Claude Code. Try:

  • "What testing skills are available for Python?"
  • "Show me debugging skills"
  • "Recommend skills for my project"

Project Structure

~/.mcp-skills/
├── config.yaml              # User configuration
├── repos/                   # Cloned skill repositories
│   ├── anthropics/skills/
│   ├── obra/superpowers/
│   └── custom-repo/
├── indices/                 # Vector + KG indices
│   ├── vector_store/
│   └── knowledge_graph/
└── metadata.db             # SQLite metadata

Architecture

mcp-skills uses a hybrid RAG approach combining:

Vector Store (ChromaDB):

  • Fast semantic search over skill descriptions
  • Embeddings generated with sentence-transformers
  • Persistent local storage with minimal configuration

Knowledge Graph (NetworkX):

  • Skill relationships and dependencies
  • Category and toolchain associations
  • Related skill discovery

Toolchain Detection:

  • Automatic detection of programming languages
  • Framework and build tool identification
  • Intelligent skill recommendations

Configuration

Global Configuration (~/.mcp-skills/config.yaml)

repositories:
  - url: https://github.com/anthropics/skills.git
    priority: 100
    auto_update: true

vector_store:
  backend: chromadb
  embedding_model: all-MiniLM-L6-v2

server:
  transport: stdio
  log_level: info

Project Configuration (.mcp-skills.yaml)

project:
  name: my-project
  toolchain:
    primary: Python
    frameworks: [Flask, SQLAlchemy]

auto_load:
  - systematic-debugging
  - test-driven-development

CLI Commands

# Setup and Configuration
mcp-skills setup                    # Interactive setup wizard
mcp-skills config                   # Show configuration

# Server
mcp-skills serve                    # Start MCP server (stdio)
mcp-skills serve --http             # Start HTTP server
mcp-skills serve --dev              # Development mode (auto-reload)

# Skills Management
mcp-skills search "testing"         # Search skills
mcp-skills list                     # List all skills
mcp-skills info pytest-skill        # Show skill details
mcp-skills recommend                # Get recommendations

# Repositories
mcp-skills repo add <url>           # Add repository
mcp-skills repo list                # List repositories
mcp-skills repo update              # Update all repositories

# Indexing
mcp-skills index                    # Rebuild indices
mcp-skills index --incremental      # Index only new skills

# Utilities
mcp-skills health                   # Health check
mcp-skills stats                    # Usage statistics

MCP Tools

mcp-skills exposes these tools to code assistants:

  • search_skills: Natural language skill search
  • get_skill: Load full skill instructions by ID
  • recommend_skills: Get recommendations for current project
  • list_categories: List all skill categories
  • update_repositories: Pull latest skills from git

Development

Requirements

  • Python 3.11+
  • Git

Setup Development Environment

git clone https://github.com/yourusername/mcp-skills.git
cd mcp-skills
pip install -e ".[dev]"

Run Tests

make quality

Linting and Formatting

make lint-fix

Documentation

Architecture

See docs/architecture/README.md for detailed architecture design.

Skills Collections

See docs/skills/RESOURCES.md for a comprehensive index of skill repositories compatible with mcp-skills, including:

  • Official Anthropic skills
  • Community collections (obra/superpowers, claude-mpm-skills, etc.)
  • Toolchain-specific skills (Python, TypeScript, Rust, Go, Java)
  • Operations & DevOps skills
  • MCP servers that provide skill-like capabilities

Contributing

Contributions welcome! Please read our contributing guidelines first.

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run make quality to ensure tests pass
  5. Submit a pull request

License

MIT License - see LICENSE for details.

Acknowledgments

Links


Status: 🚧 Early development - MVP in progress

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选