
MCP-Smallest.ai
A Model Context Protocol server implementation that provides a standardized interface for interacting with Smallest.ai's knowledge base management system.
Tools
listKnowledgeBases
createKnowledgeBase
getKnowledgeBase
README
MCP-Smallest.ai
A Model Context Protocol (MCP) server implementation for Smallest.ai API integration. This project provides a standardized interface for interacting with Smallest.ai's knowledge base management system.
Architecture
System Overview
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ Client App │◄────┤ MCP Server │◄────┤ Smallest.ai │
│ │ │ │ │ API │
└─────────────────┘ └─────────────────┘ └─────────────────┘
Component Details
1. Client Application Layer
- Implements MCP client protocol
- Handles request formatting
- Manages response parsing
- Provides error handling
2. MCP Server Layer
-
Protocol Handler
- Manages MCP protocol communication
- Handles client connections
- Routes requests to appropriate tools
-
Tool Implementation
- Knowledge base management tools
- Parameter validation
- Response formatting
- Error handling
-
API Integration
- Smallest.ai API communication
- Authentication management
- Request/response handling
3. Smallest.ai API Layer
- Knowledge base management
- Data storage and retrieval
- Authentication and authorization
Data Flow
1. Client Request
└─► MCP Protocol Validation
└─► Tool Parameter Validation
└─► API Request Formation
└─► Smallest.ai API Call
└─► Response Processing
└─► Client Response
Security Architecture
┌─────────────────┐
│ Client Auth │
└────────┬────────┘
│
┌────────▼────────┐
│ MCP Validation │
└────────┬────────┘
│
┌────────▼────────┐
│ API Auth │
└────────┬────────┘
│
┌────────▼────────┐
│ Smallest.ai │
└─────────────────┘
Overview
This project implements an MCP server that acts as a middleware between clients and the Smallest.ai API. It provides a standardized way to interact with Smallest.ai's knowledge base management features through the Model Context Protocol.
Architecture
[Client Application] <---> [MCP Server] <---> [Smallest.ai API]
Components
-
MCP Server
- Handles client requests
- Manages API communication
- Provides standardized responses
- Implements error handling
-
Knowledge Base Tools
listKnowledgeBases
: Lists all knowledge basescreateKnowledgeBase
: Creates new knowledge basesgetKnowledgeBase
: Retrieves specific knowledge base details
-
Documentation Resource
- Available at
docs://smallest.ai
- Provides usage instructions and examples
- Available at
Prerequisites
- Node.js 18+ or Bun runtime
- Smallest.ai API key
- TypeScript knowledge
Installation
- Clone the repository:
git clone https://github.com/yourusername/MCP-smallest.ai.git
cd MCP-smallest.ai
- Install dependencies:
bun install
- Create a
.env
file in the root directory:
SMALLEST_AI_API_KEY=your_api_key_here
Configuration
Create a config.ts
file with your Smallest.ai API configuration:
export const config = {
API_KEY: process.env.SMALLEST_AI_API_KEY,
BASE_URL: 'https://atoms-api.smallest.ai/api/v1'
};
Usage
Starting the Server
bun run index.ts
Testing the Server
bun run test-client.ts
Available Tools
- List Knowledge Bases
await client.callTool({
name: "listKnowledgeBases",
arguments: {}
});
- Create Knowledge Base
await client.callTool({
name: "createKnowledgeBase",
arguments: {
name: "My Knowledge Base",
description: "Description of the knowledge base"
}
});
- Get Knowledge Base
await client.callTool({
name: "getKnowledgeBase",
arguments: {
id: "knowledge_base_id"
}
});
Response Format
All responses follow this structure:
{
content: [{
type: "text",
text: JSON.stringify(data, null, 2)
}]
}
Error Handling
The server implements comprehensive error handling:
- HTTP errors
- API errors
- Parameter validation errors
- Type-safe error responses
Development
Project Structure
MCP-smallest.ai/
├── index.ts # MCP server implementation
├── test-client.ts # Test client implementation
├── config.ts # Configuration file
├── package.json # Project dependencies
├── tsconfig.json # TypeScript configuration
└── README.md # This file
Adding New Tools
- Define the tool in
index.ts
:
server.tool(
"toolName",
{
param1: z.string(),
param2: z.number()
},
async (args) => {
// Implementation
}
);
- Update documentation in the resource:
server.resource(
"documentation",
"docs://smallest.ai",
async (uri) => ({
contents: [{
uri: uri.href,
text: `Updated documentation...`
}]
})
);
Security
- API keys are stored in environment variables
- All requests are authenticated
- Parameter validation is implemented
- Error messages are sanitized
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Acknowledgments
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。