
MCP Starter for Puch AI
Provides job search capabilities including analyzing job descriptions, fetching job postings from URLs, and searching opportunities, plus basic image processing tools like converting images to black and white.
README
MCP Starter for Puch AI
This is a starter template for creating your own Model Context Protocol (MCP) server that works with Puch AI. It comes with ready-to-use tools for job searching and image processing.
What is MCP?
MCP (Model Context Protocol) allows AI assistants like Puch to connect to external tools and data sources safely. Think of it like giving your AI extra superpowers without compromising security.
What's Included in This Starter?
🎯 Job Finder Tool
- Analyze job descriptions - Paste any job description and get smart insights
- Fetch job postings from URLs - Give a job posting link and get the full details
- Search for jobs - Use natural language to find relevant job opportunities
🖼️ Image Processing Tool
- Convert images to black & white - Upload any image and get a monochrome version
🔐 Built-in Authentication
- Bearer token authentication (required by Puch AI)
- Validation tool that returns your phone number
Quick Setup Guide
Step 1: Install Dependencies
First, make sure you have Python 3.11 or higher installed. Then:
# Create virtual environment
uv venv
# Install all required packages
uv sync
# Activate the environment
source .venv/bin/activate
Step 2: Set Up Environment Variables
Create a .env
file in the project root:
# Copy the example file
cp .env.example .env
Then edit .env
and add your details:
AUTH_TOKEN=your_secret_token_here
MY_NUMBER=919876543210
Important Notes:
AUTH_TOKEN
: This is your secret token for authentication. Keep it safe!MY_NUMBER
: Your WhatsApp number in format{country_code}{number}
(e.g.,919876543210
for +91-9876543210)
Step 3: Run the Server
cd mcp-bearer-token
python mcp_starter.py
You'll see: 🚀 Starting MCP server on http://0.0.0.0:8086
Step 4: Make It Public (Required by Puch)
Since Puch needs to access your server over HTTPS, you need to expose your local server:
Option A: Using ngrok (Recommended)
-
Install ngrok: Download from https://ngrok.com/download
-
Get your authtoken:
- Go to https://dashboard.ngrok.com/get-started/your-authtoken
- Copy your authtoken
- Run:
ngrok config add-authtoken YOUR_AUTHTOKEN
-
Start the tunnel:
ngrok http 8086
Option B: Deploy to Cloud
You can also deploy this to services like:
- Railway
- Render
- Heroku
- DigitalOcean App Platform
How to Connect with Puch AI
- Open Puch AI in your browser
- Start a new conversation
- Use the connect command:
/mcp connect https://your-domain.ngrok.app/mcp your_secret_token_here
Debug Mode
To get more detailed error messages:
/mcp diagnostics-level debug
Customizing the Starter
Adding New Tools
-
Create a new tool function:
@mcp.tool(description="Your tool description") async def your_tool_name( parameter: Annotated[str, Field(description="Parameter description")] ) -> str: # Your tool logic here return "Tool result"
-
Add required imports if needed
📚 Additional Documentation Resources
Official Puch AI MCP Documentation
- Main Documentation: https://puch.ai/mcp
- Protocol Compatibility: Core MCP specification with Bearer & OAuth support
- Command Reference: Complete MCP command documentation
- Server Requirements: Tool registration, validation, HTTPS requirements
Technical Specifications
- JSON-RPC 2.0 Specification: https://www.jsonrpc.org/specification (for error handling)
- MCP Protocol: Core protocol messages, tool definitions, authentication
Supported vs Unsupported Features
✓ Supported:
- Core protocol messages
- Tool definitions and calls
- Authentication (Bearer & OAuth)
- Error handling
✗ Not Supported:
- Videos extension
- Resources extension
- Prompts extension
Getting Help
- Join Puch AI Discord: https://discord.gg/VMCnMvYx
- Check Puch AI MCP docs: https://puch.ai/mcp
- Puch WhatsApp Number: +91 99988 81729
Happy coding! 🚀
Use the hashtag #BuildWithPuch
in your posts about your MCP!
This starter makes it super easy to create your own MCP server for Puch AI. Just follow the setup steps and you'll be ready to extend Puch with your custom tools!
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。