
MCP Stock Details Server
A Model Context Protocol server providing comprehensive Korean stock market analysis, including financial data, valuation metrics, ESG information, and investment insights.
README
MCP Stock Details Server
A comprehensive Model Context Protocol (MCP) server for Korean stock market analysis, providing detailed financial data, analysis tools, and investment insights.
🚀 Features
Phase 1 ✅ - Core Infrastructure
- MCP Server Framework: Model Context Protocol compliant server
- Data Collection: DART (Data Analysis, Retrieval and Transfer System) integration
- Caching System: Redis-based caching with memory fallback
- Error Handling: Comprehensive exception handling and logging
Phase 2 ✅ - Analysis Tools (Weeks 1-5)
Week 1: Company & Financial Analysis
get_company_overview
: Comprehensive company informationget_financial_statements
: Income statement, balance sheet, cash flow analysis
Week 2: Financial Ratios & Valuation
get_financial_ratios
: 50+ financial ratios with industry benchmarksget_valuation_metrics
: Multiple valuation approaches (DCF, multiples, etc.)
Week 3: ESG & Technical Analysis
get_esg_info
: Environmental, Social, Governance analysisget_technical_indicators
: Technical analysis indicators (RSI, MACD, etc.)
Week 4: Shareholder & Business Analysis
get_shareholder_info
: Shareholder structure, governance metricsget_business_segments
: Business segment performance analysis
Week 5: Market Analysis
get_peer_comparison
: Industry peer comparison and benchmarkingget_analyst_consensus
: Analyst consensus, target prices, investment opinions
Upcoming Features (Phase 3-5)
- Advanced valuation models (DCF, Monte Carlo simulation)
- Risk analysis engine (VaR, stress testing)
- Real-time data pipeline
- Performance optimization
- Production deployment
🛠️ Installation
Prerequisites
- Python 3.8 or higher
- Redis (optional, for enhanced caching)
Setup
# Clone the repository
git clone https://github.com/yourusername/mcp-stock-details.git
cd mcp-stock-details
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Set up environment variables
cp .env.example .env
# Edit .env with your DART API key and other settings
Environment Variables
# Required
DART_API_KEY=your_dart_api_key_here
# Optional
REDIS_URL=redis://localhost:6379/0
LOG_LEVEL=INFO
CACHE_TTL=3600
🚀 Quick Start
Running the Server
# Start the MCP server
python -m src.server
# Or run with specific configuration
python -m src.server --config config/development.json
Using with Claude Desktop
Add to your Claude Desktop MCP configuration:
{
"mcpServers": {
"stock-details": {
"command": "python",
"args": ["-m", "src.server"],
"cwd": "/path/to/mcp-stock-details",
"env": {
"DART_API_KEY": "your_api_key"
}
}
}
}
Example Usage
# Get company overview
result = await server.call_tool("get_company_overview", {
"company_code": "005930", # Samsung Electronics
"include_financial_summary": True
})
# Analyze financial ratios
result = await server.call_tool("get_financial_ratios", {
"company_code": "005930",
"include_industry_comparison": True,
"analysis_period": "3Y"
})
# Compare with peers
result = await server.call_tool("get_peer_comparison", {
"company_code": "005930",
"include_valuation_comparison": True,
"max_peers": 5
})
📊 Supported Analysis
Financial Analysis
- Profitability Ratios: ROE, ROA, Operating Margin, Net Margin
- Liquidity Ratios: Current Ratio, Quick Ratio, Cash Ratio
- Leverage Ratios: Debt-to-Equity, Interest Coverage, EBITDA Coverage
- Efficiency Ratios: Asset Turnover, Inventory Turnover, Receivables Turnover
- Valuation Ratios: P/E, P/B, EV/EBITDA, PEG Ratio
Advanced Analysis
- DCF Valuation: Multi-stage dividend discount model
- Peer Comparison: Industry benchmarking and relative valuation
- ESG Scoring: Environmental, Social, Governance metrics
- Technical Indicators: RSI, MACD, Bollinger Bands, Moving Averages
- Risk Analysis: Beta, VaR, Sharpe Ratio, Maximum Drawdown
Market Intelligence
- Analyst Consensus: Target prices, investment ratings, earnings estimates
- Shareholder Analysis: Ownership structure, governance metrics
- Business Segments: Revenue breakdown, segment performance analysis
🧪 Testing
# Run all tests
python -m pytest
# Run with coverage
python -m pytest --cov=src --cov-report=html
# Run specific test categories
python -m pytest tests/unit/
python -m pytest tests/integration/
📁 Project Structure
mcp-stock-details/
├── src/
│ ├── server.py # Main MCP server
│ ├── config.py # Configuration management
│ ├── exceptions.py # Custom exceptions
│ ├── models/ # Data models
│ ├── tools/ # Analysis tools
│ │ ├── company_tools.py
│ │ ├── financial_tools.py
│ │ ├── valuation_tools.py
│ │ ├── esg_tools.py
│ │ ├── technical_tools.py
│ │ ├── risk_tools.py
│ │ ├── shareholder_tools.py
│ │ ├── business_segment_tools.py
│ │ ├── peer_comparison_tools.py
│ │ └── analyst_consensus_tools.py
│ ├── collectors/ # Data collectors
│ ├── utils/ # Utility functions
│ └── cache/ # Caching system
├── tests/
│ ├── unit/ # Unit tests
│ ├── integration/ # Integration tests
│ └── fixtures/ # Test data
├── config/ # Configuration files
├── docs/ # Documentation
├── requirements.txt
├── development-plan.md
└── README.md
📈 Development Status
- [x] Phase 1: Core Infrastructure (Completed)
- [x] Phase 2: Analysis Tools - Weeks 1-5 (Completed)
- [ ] Phase 3: Advanced Analysis Engine - Weeks 6-8
- [ ] Phase 4: Performance & Quality - Weeks 9-10
- [ ] Phase 5: Deployment & Operations - Weeks 11-12
See Development Plan for detailed roadmap.
🤝 Contributing
We welcome contributions! Please see our Contributing Guide for details.
Development Setup
# Install development dependencies
pip install -r requirements-dev.txt
# Install pre-commit hooks
pre-commit install
# Run tests before committing
python -m pytest
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🔗 Related Resources
📞 Support
- Issues: GitHub Issues
- Discussions: GitHub Discussions
- Email: support@example.com
🙏 Acknowledgments
- DART (금융감독원) for providing comprehensive financial data
- Model Context Protocol team for the excellent framework
- Korean financial data providers and community
Note: This project is for educational and research purposes. Please ensure compliance with data usage terms and local regulations when using financial data.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。