mcp-strategy-research-db
An MCP server that provides access to a SQLite database for analyzing trading strategy backtest results and performance metrics. It enables AI assistants to identify robust strategies across different market regimes and compare them against benchmarks using risk-adjusted metrics.
README
mcp-strategy-research-db
A Model Context Protocol (MCP) server that provides Claude Code access to a strategy research SQLite database for analyzing trading strategy backtest results.
Features
- Analyze strategy performance across multiple market periods
- Find strategies that work across all market regimes (robust strategies)
- Compare strategies against Buy & Hold benchmarks
- Query risk-adjusted metrics (Calmar ratio, Sharpe ratio)
- Find alpha-generating strategies that beat benchmarks
- Analyze strategy consistency across different symbols
- Run custom SQL queries (read-only) for advanced analysis
Installation
# Clone the repository
git clone https://github.com/locupleto/mcp-strategy-research-db.git
cd mcp-strategy-research-db
# Create virtual environment
python3 -m venv venv
source venv/bin/activate
# Install dependencies
pip install -r requirements.txt
Configuration
Set the required environment variable:
export STRATEGY_DB_PATH=/path/to/strategy_research.db
The database is typically generated by the trading-lab project's strategy search scripts.
Register with Claude Code
MCP servers can be registered at two scopes:
Project Level (Recommended)
Registers the server for the current project only. The configuration is stored in ~/.claude.json under the project's path. This is the recommended approach for project-specific tools.
cd /Volumes/Work/development/projects/git/mcp-strategy-research-db
claude mcp add strategy-research-db \
"$(pwd)/venv/bin/python3" \
"$(pwd)/strategy_research_mcp_server.py"
This adds the server to ~/.claude.json under the project's mcpServers configuration:
{
"projects": {
"/Volumes/Work/development/projects/git/mcp-strategy-research-db": {
"mcpServers": {
"strategy-research-db": {
"type": "stdio",
"command": "/Volumes/Work/development/projects/git/mcp-strategy-research-db/venv/bin/python3",
"args": [
"/Volumes/Work/development/projects/git/mcp-strategy-research-db/strategy_research_mcp_server.py"
]
}
}
}
}
}
User Level (Global)
Registers the server globally, available in all projects. Use the -s user flag:
claude mcp add -s user strategy-research-db \
"$(pwd)/venv/bin/python3" \
"$(pwd)/strategy_research_mcp_server.py"
Verify Registration
# List all registered MCP servers
claude mcp list
# Debug mode for troubleshooting
claude --mcp-debug
Tools (17 total)
Database Overview
| Tool | Description |
|---|---|
get_database_status |
Database statistics: runs, strategies, symbols, date ranges |
list_search_runs |
List all backtest runs with filtering options |
get_run_details |
Get detailed information about a specific search run |
Strategy Analysis
| Tool | Description |
|---|---|
get_top_strategies |
Get top-ranked strategies with customizable sorting and filters |
get_strategy_details |
Get full details for a specific strategy ID |
compare_strategy_across_periods |
Analyze how a strategy performs across different market periods |
Cross-Period Robustness
| Tool | Description |
|---|---|
find_robust_strategies |
Find strategies that work consistently across ALL market periods |
get_period_summary |
Summary statistics for each market period tested |
Benchmark Analysis
| Tool | Description |
|---|---|
find_alpha_generators |
Find strategies that beat Buy & Hold benchmark |
get_risk_adjusted_rankings |
Rank strategies by Calmar ratio or other risk-adjusted metrics |
Symbol Analysis
| Tool | Description |
|---|---|
get_symbol_performance |
Performance breakdown by individual symbol |
find_best_symbols_for_strategy |
Find which symbols work best with a given strategy |
Capital Deployment Analysis
| Tool | Description |
|---|---|
get_capital_deployment_analysis |
Analyze portfolio capital utilization across periods using time-in-market data |
get_daily_position_counts |
Get exact daily position counts from trade-level data (requires Dec 2025+ runs) |
compare_timing_modes |
Compare Conservative (T+1) vs Aggressive (same-day) trade timing |
Advanced
| Tool | Description |
|---|---|
run_custom_query |
Execute custom SQL queries (read-only) |
get_schema |
Get database schema documentation |
list_strategy_ids |
List strategy IDs with optional pattern filtering |
Key Metrics Explained
Performance Metrics
- Expectancy: Expected return per trade (%)
- Win Rate: Percentage of winning trades
- Profit Factor: Gross profit / Gross loss ratio
- CAGR: Compound Annual Growth Rate
Risk Metrics
- Max Drawdown: Largest peak-to-trough decline
- Calmar Ratio: CAGR / Max Drawdown (higher = better risk-adjusted returns)
- Sharpe Ratio: Risk-adjusted return relative to risk-free rate
Consistency Metrics
- Consistency Score: % of symbols where strategy is profitable
- Symbols Beating Benchmark: % of symbols that outperform Buy & Hold
Example Usage
# Get overview of the database
> get_database_status
# Find strategies that work in ALL market periods
> find_robust_strategies min_periods=6 min_consistency=0.7
# Get top strategies for a specific period
> get_top_strategies period_name="2008 Financial Crisis" sort_by="median_calmar_ratio" limit=10
# Compare a strategy across all periods
> compare_strategy_across_periods strategy_id="buy_adm_momentum_low__sell_adm_momentum_high"
# Find alpha generators
> find_alpha_generators min_alpha=5.0 min_beat_rate=0.6
Database Schema
The SQLite database contains four main tables:
search_runs
Metadata about each backtest run (study, period, date range, benchmark data)
aggregated_results
Strategy-level aggregated metrics using MEDIAN values across all symbols tested
symbol_results
Per-symbol backtest results for detailed analysis
trade_results (Dec 2025+)
Individual trade records with entry/exit dates for daily position count analysis. Enables exact portfolio-level capital deployment tracking over time.
Requirements
- Python 3.10+
- MCP SDK (
mcp>=1.23.1) - SQLite strategy research database (from trading-lab project)
Related Projects
trading-lab: Strategy backtesting and signal research platformmcp-marketdata-db: Market data MCP server
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。