MCP Synth Controller
Enables LLMs to control synthesizer parameters in real-time by translating natural language commands into OSC messages sent to a JUCE synthesizer application.
README
MCP Synth Controller
This project implements a Python-based Model Context Protocol (MCP) server designed to allow large language models (LLMs) to control parameters of a JUCE synthesizer in real time.
The MCP server exposes structured tools that an LLM can call, and these tool calls are translated into OSC messages sent to a running JUCE plugin or application.
This repository contains the Python side only. The corresponding JUCE synthesizer must implement an OSC receiver capable of handling messages such as:
/setParameter <paramName> <value>
The JUCE implementation is being developed separately in: https://github.com/TYLERSFOSTER/MIDIControl001
Project Overview
This project provides:
- A working MCP server (
mcp_server.py) - Tool schemas that define how the LLM may interact (
schemas.py) - Python functions implementing those tools (
tools.py) - An OSC bridge for communicating with the JUCE synth (
juce_bridge.py) - A test suite ensuring correctness (
tests/)
The goal is to enable a workflow such as:
- A speech-to-text system turns spoken commands into text.
- The text is fed to an LLM.
- The LLM responds by invoking MCP tools such as
setParameter. - The MCP server receives the tool call and executes the corresponding Python function.
- The function sends an OSC message to the JUCE synth, modifying parameters in real time.
This architecture allows expressive, natural-language control of a synthesizer using speech or text.
Directory Structure
mcp_synth_controller/
├── pyproject.toml
├── README.md
├── src/
│ └── server/
│ ├── config.py
│ ├── juce_bridge.py
│ ├── mcp_server.py
│ ├── schemas.py
│ └── tools.py
├── tests/
│ ├── test_osc_client_init.py
│ ├── test_list_parameters.py
│ ├── test_set_parameter_message_format.py
│ ├── test_mcp_initialize.py
│ └── test_mcp_tool_call.py
└── examples/
└── test_send_osc.py
Dependency Management
This project uses uv for Python dependency management.
To install dependencies:
uv sync
To run the MCP server:
uv run python src/server/mcp_server.py
To run the test suite:
uv run pytest
MCP Server
The MCP server:
- Handles the MCP initialization handshake.
- Advertises available tools to the LLM.
- Receives tool calls from the LLM.
- Dispatches these calls to the correct Python functions.
- Returns structured tool results.
The server communicates via STDIN/STDOUT using JSON, following the MCP protocol.
Tools
Each tool corresponds to a callable action available to the LLM.
Tools currently implemented:
setParameter(param: str, value: float)
Sets a synthesizer parameter via OSC.
getParameter(param: str)
Placeholder implementation (returns a dummy value).
Real bidirectional communication may be added later.
listParameters()
Returns a list of known parameters.
This can be later expanded to query the JUCE synth dynamically.
OSC Bridge
juce_bridge.py uses python-osc to send messages to JUCE.
By default, messages follow this format:
/setParameter <paramName> <value>
The corresponding JUCE OSCReceiver must be implemented.
See the next section.
Required JUCE Implementation
To complete this system, the JUCE synth must:
- Create an
OSCReceiver - Bind to the same port specified in
config.py - Add a listener for
/setParameter - Parse incoming messages and map parameter names to actual JUCE parameters
Example responsibilities on the JUCE side:
- Initialize an OSCReceiver (
connect(9001)) - Add a listener for
/setParameter - Extract parameter name and float value from the OSCMessage
- Apply the value using
setValueNotifyingHost
The JUCE implementation belongs in the separate repository:
https://github.com/TYLERSFOSTER/MIDIControl001
Example OSC Test
To manually verify OSC transmission:
uv run python examples/test_send_osc.py
This sends:
/setParameter testParam 0.42
If your JUCE OSCReceiver is active, it should appear in your debug output.
Tests
This project includes a complete pytest suite validating:
- OSC client initialization
- OSC message format
- MCP initialization handshake
- Tool call dispatch logic
- Parameter listing behavior
Run tests with:
uv run pytest
All tests should pass.
Future Work
- Implement bidirectional OSC or TCP communication with JUCE
- Add dynamic parameter discovery from JUCE
- Add ramping, smoothing, and modulation utilities
- Integrate with speech-to-text pipeline
- Provide real-time LLM agent control in Claude Desktop or similar
License
MIT License.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。