MCP Tabular Data Analysis Server
Enables comprehensive analysis of CSV files and SQLite databases through tools for statistics, correlations, anomaly detection, pivot tables, time series analysis, visualization, and automated insights discovery.
README
MCP Tabular Data Analysis Server
A Model Context Protocol (MCP) server that provides tools for analyzing numeric and tabular data. Works with CSV files and SQLite databases.
Demo
auto_insights
<img width="656" height="815" alt="image" src="https://github.com/user-attachments/assets/5555e251-55b8-464e-9c92-91f9059a5d0f" />
data_quality_report
<img width="854" height="856" alt="image" src="https://github.com/user-attachments/assets/bb7fcc7f-35a6-4fb2-8b35-5eafd6ce782b" />
analyze_time_series
<img width="600" height="873" alt="image" src="https://github.com/user-attachments/assets/3e5a3c75-0f8d-4f6e-b745-a1e4b33cf809" />
Features
Core Tools
| Tool | Description |
|---|---|
list_data_files |
List available CSV and SQLite files in the data directory |
describe_dataset |
Generate statistics for a dataset (shape, types, distributions, missing values) |
detect_anomalies |
Find outliers using Z-score or IQR methods |
compute_correlation |
Calculate correlation matrices between numeric columns |
filter_rows |
Filter data using various operators (eq, gt, lt, contains, etc.) |
group_aggregate |
Group data and compute aggregations (sum, mean, count, etc.) |
query_sqlite |
Execute SQL queries on SQLite databases |
list_tables |
List all tables and schemas in a SQLite database |
Analytics Tools
| Tool | Description |
|---|---|
create_pivot_table |
Create Excel-style pivot tables with flexible aggregations |
data_quality_report |
Data quality assessment with scores and recommendations |
analyze_time_series |
Time series analysis with trends, seasonality, and moving averages |
generate_chart |
Create visualizations (bar, line, scatter, histogram, pie, box plots) |
merge_datasets |
Join/merge two datasets together (inner, left, right, outer joins) |
statistical_test |
Hypothesis testing (t-test, ANOVA, chi-squared, correlation tests) |
auto_insights |
Discover patterns and insights |
export_data |
Export filtered/transformed data to new CSV files |
Installation
Prerequisites
- Python 3.10+
- uv (recommended) or pip
Install with uv
cd mcp-tabular
uv sync
Install with pip
cd mcp-tabular
pip install -e .
Usage
Running the Server Directly
# With uv
uv run mcp-tabular
# With pip installation
mcp-tabular
Configure with Claude Desktop
-
Locate your Claude Desktop config file:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json - Windows:
%APPDATA%\Claude\claude_desktop_config.json - Linux:
~/.config/Claude/claude_desktop_config.json
- macOS:
-
Add this configuration (replace
/Users/kirondeb/mcp-tabularwith your actual path):
{
"mcpServers": {
"tabular-data": {
"command": "/Users/kirondeb/mcp-tabular/.venv/bin/python",
"args": [
"-m",
"mcp_tabular.server"
]
}
}
}
-
Restart Claude Desktop (quit and reopen)
-
Test by asking Claude: "Describe the dataset in data/sample_sales.csv"
See CONNECT_TO_CLAUDE_DESKTOP.md for detailed instructions and troubleshooting.
See TEST_PROMPTS.md for example prompts.
Sample Data
The project includes sample data for testing:
data/sample_sales.csv- Sales transaction datadata/sample.db- SQLite database with customers, orders, and products tables
To create the SQLite sample database:
python scripts/create_sample_db.py
Path Resolution
All file paths are resolved relative to the project root directory:
- Relative paths like
data/sample_sales.csvwork from any working directory - Absolute paths also work as expected
- Paths resolve relative to where
mcp_tabularis installed
Tool Examples
List Data Files
List available data files:
list_data_files()
Lists all CSV and SQLite files in the data directory with metadata.
Describe Dataset
Generate statistics for a dataset:
describe_dataset(file_path="data/sample_sales.csv")
Includes shape, column types, numeric statistics (mean, std, median, skew, kurtosis), categorical value counts, and a sample preview.
Detect Anomalies
Find outliers in numeric columns:
detect_anomalies(
file_path="data/sample_sales.csv",
column="total_sales",
method="zscore",
threshold=3.0
)
Supports zscore and iqr methods.
Compute Correlation
Calculate correlations between numeric columns:
compute_correlation(
file_path="data/sample_sales.csv",
method="pearson"
)
Includes full correlation matrix and top correlations ranked by strength.
Filter Rows
Filter data based on conditions:
filter_rows(
file_path="data/sample_sales.csv",
column="category",
operator="eq",
value="Electronics"
)
Operators: eq, ne, gt, gte, lt, lte, contains, startswith, endswith
Group & Aggregate
Group data and compute aggregations:
group_aggregate(
file_path="data/sample_sales.csv",
group_by=["category", "region"],
aggregations={"total_sales": ["sum", "mean"], "quantity": ["count"]}
)
Query SQLite
Execute SQL queries on databases:
query_sqlite(
db_path="data/sample.db",
query="SELECT * FROM customers WHERE lifetime_value > 1000"
)
List Tables
List tables and schemas in a SQLite database:
list_tables(db_path="data/sample.db")
Advanced Analytics Examples
Create Pivot Table
Create Excel-style pivot tables:
create_pivot_table(
file_path="data/sample_sales.csv",
index=["region"],
columns=["category"],
values="total_sales",
aggfunc="sum"
)
Data Quality Report
Generate a data quality assessment:
data_quality_report(file_path="data/sample_sales.csv")
Includes completeness score, duplicate detection, outlier analysis, and an overall quality grade (A-F).
Time Series Analysis
Analyze trends and seasonality:
analyze_time_series(
file_path="data/sample_sales.csv",
date_column="order_date",
value_column="total_sales",
freq="M",
include_forecast=True
)
Generate Charts
Create visualizations (returned as base64 images):
generate_chart(
file_path="data/sample_sales.csv",
chart_type="bar",
x_column="category",
y_column="total_sales",
title="Sales by Category"
)
Supported chart types: bar, line, scatter, histogram, pie, box
Merge Datasets
Join or merge two datasets:
merge_datasets(
file_path_left="data/orders.csv",
file_path_right="data/customers.csv",
on=["customer_id"],
how="left"
)
Statistical Testing
Run hypothesis tests:
statistical_test(
file_path="data/sample_sales.csv",
test_type="ttest_ind",
column1="total_sales",
group_column="region",
alpha=0.05
)
Supported tests: ttest_ind, ttest_paired, chi_squared, anova, mann_whitney, pearson, spearman
Auto Insights
Discover patterns and insights:
auto_insights(file_path="data/sample_sales.csv")
Includes insights about correlations, outliers, skewed distributions, missing data, and more.
Export Data
Export filtered data to a new CSV:
export_data(
file_path="data/sample_sales.csv",
output_name="electronics_sales",
filter_column="category",
filter_operator="eq",
filter_value="Electronics",
sort_by="total_sales",
sort_ascending=False
)
Development
Run Tests
uv run pytest
Project Structure
mcp-tabular/
├── src/
│ └── mcp_tabular/
│ ├── __init__.py
│ └── server.py # Main MCP server implementation
├── data/
│ ├── sample_sales.csv # Sample CSV data
│ └── sample.db # Sample SQLite database
├── scripts/
│ └── create_sample_db.py
├── pyproject.toml
├── claude_desktop_config.json
└── README.md
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。