
MCP Task
Async MCP server for running long-running AI tasks with real-time progress monitoring, enabling users to start, monitor, and manage complex AI workflows across multiple models.
README
@just-every/mcp-task
Async MCP server for running long-running AI tasks with real-time progress monitoring using @just-every/task.
Quick Start
1. Create or use an environment file
Option A: Create a new .llm.env
file in your home directory:
# Download example env file
curl -o ~/.llm.env https://raw.githubusercontent.com/just-every/mcp-task/main/.env.example
# Edit with your API keys
nano ~/.llm.env
Option B: Use an existing .env
file (must use absolute path):
# Example: /Users/yourname/projects/myproject/.env
# Example: /home/yourname/workspace/.env
2. Install
Claude Code
# Using ~/.llm.env
claude mcp add task -s user -e ENV_FILE=$HOME/.llm.env -- npx -y @just-every/mcp-task
# Using existing .env file (absolute path required)
claude mcp add task -s user -e ENV_FILE=/absolute/path/to/your/.env -- npx -y @just-every/mcp-task
# For debugging, check if ENV_FILE is being passed correctly:
claude mcp list
Other MCP Clients
Add to your MCP configuration:
{
"mcpServers": {
"task": {
"command": "npx",
"args": ["-y", "@just-every/mcp-task"],
"env": {
"ENV_FILE": "/path/to/.llm.env"
}
}
}
}
Available Tools
run_task
Start a long-running AI task asynchronously. Returns a task ID immediately.
Parameters:
task
(required): The task prompt - what to performmodel
(optional): Model class or specific model namecontext
(optional): Background context for the taskoutput
(optional): The desired output/success state
Returns: Task ID for monitoring progress
check_task_status
Check the status of a running task with real-time progress updates.
Parameters:
task_id
(required): The task ID returned from run_task
Returns: Current status, progress summary, recent events, and tool calls
get_task_result
Get the final result of a completed task.
Parameters:
task_id
(required): The task ID returned from run_task
Returns: The complete output from the task
cancel_task
Cancel a pending or running task.
Parameters:
task_id
(required): The task ID to cancel
Returns: Cancellation status
list_tasks
List all tasks with their current status.
Parameters:
status_filter
(optional): Filter by status (pending, running, completed, failed, cancelled)
Returns: Task statistics and summaries
Example Workflow
// 1. Start a task
const startResponse = await callTool('run_task', {
"model": "standard",
"task": "Search for the latest AI news and summarize",
"output": "A bullet-point summary of 5 recent AI developments"
});
// Returns: { "task_id": "abc-123", "status": "pending", ... }
// 2. Check progress
const statusResponse = await callTool('check_task_status', {
"task_id": "abc-123"
});
// Returns: { "status": "running", "progress": "Searching for AI news...", ... }
// 3. Get result when complete
const resultResponse = await callTool('get_task_result', {
"task_id": "abc-123"
});
// Returns: The complete summary
Supported Models
Model Classes
reasoning
: Complex reasoning and analysisvision
: Image and visual processingstandard
: General purpose tasksmini
: Lightweight, fast responsesreasoning_mini
: Lightweight reasoningcode
: Code generation and analysiswriting
: Creative and professional writingsummary
: Text summarizationvision_mini
: Lightweight vision processinglong
: Long-form content generation
Popular Models
claude-opus-4
: Anthropic's most powerful modelgrok-4
: xAI's latest Grok modelgemini-2.5-pro
: Google's Gemini Proo3
,o3-pro
: OpenAI's o3 models- And any other model name supported by @just-every/ensemble
Integrated Tools
Tasks have access to:
- Web Search: Search the web for information using
@just-every/search
- Command Execution: Run shell commands via the
run_command
tool
API Keys
The task runner requires API keys for the AI models you want to use. Add them to your .llm.env
file:
# Core AI Models
ANTHROPIC_API_KEY=your-anthropic-key
OPENAI_API_KEY=your-openai-key
XAI_API_KEY=your-xai-key # For Grok models
GOOGLE_API_KEY=your-google-key # For Gemini models
# Search Providers (optional, for web_search tool)
BRAVE_API_KEY=your-brave-key
SERPER_API_KEY=your-serper-key
PERPLEXITY_API_KEY=your-perplexity-key
OPENROUTER_API_KEY=your-openrouter-key
Getting API Keys
- Anthropic: console.anthropic.com
- OpenAI: platform.openai.com
- xAI (Grok): x.ai
- Google (Gemini): makersuite.google.com
- Brave Search: brave.com/search/api
- Serper: serper.dev
- Perplexity: perplexity.ai
- OpenRouter: openrouter.ai
Task Lifecycle
- Pending: Task created and queued
- Running: Task is being executed with live progress via
taskStatus()
- Completed: Task finished successfully
- Failed: Task encountered an error
- Cancelled: Task was cancelled by user
Tasks are automatically cleaned up after 24 hours.
CLI Usage
The task runner can also be used directly from the command line:
# Run as MCP server (for debugging)
ENV_FILE=~/.llm.env npx @just-every/mcp-task
# Or if installed globally
npm install -g @just-every/mcp-task
ENV_FILE=~/.llm.env mcp-task serve
Configuration
Task Timeout Settings
The server includes robust safety mechanisms to prevent tasks from getting stuck. All timeouts are configurable via environment variables:
# Default production settings (optimized for long-running tasks)
TASK_TIMEOUT=18000000 # 5 hours max runtime (default)
TASK_STUCK_THRESHOLD=300000 # 5 minutes inactivity = stuck (default)
TASK_HEALTH_CHECK_INTERVAL=60000 # Check every 1 minute (default)
# For shorter tasks, you might prefer:
TASK_TIMEOUT=300000 # 5 minutes max runtime
TASK_STUCK_THRESHOLD=60000 # 1 minute inactivity
TASK_HEALTH_CHECK_INTERVAL=15000 # Check every 15 seconds
# Add to your .llm.env or pass as environment variables
Safety Features:
- Automatic timeout: Tasks exceeding
TASK_TIMEOUT
are automatically failed - Inactivity detection: Tasks with no activity for
TASK_STUCK_THRESHOLD
are marked as stuck - Health monitoring: Regular checks every
TASK_HEALTH_CHECK_INTERVAL
ensure tasks are progressing - Error recovery: Uncaught exceptions and promise rejections are handled gracefully
Development
Setup
# Clone the repository
git clone https://github.com/just-every/mcp-task.git
cd mcp-task
# Install dependencies
npm install
# Build for production
npm run build
Development Mode
# Run in development mode with your env file
ENV_FILE=~/.llm.env npm run serve:dev
Testing
# Run tests
npm test
# Type checking
npm run typecheck
# Linting
npm run lint
Architecture
mcp-task/
├── src/
│ ├── serve.ts # MCP server implementation
│ ├── index.ts # CLI entry point
│ └── utils/
│ ├── task-manager.ts # Async task lifecycle management
│ └── logger.ts # Logging utilities
├── bin/
│ └── mcp-task.js # Executable entry
└── package.json
Contributing
Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Submit a pull request
Troubleshooting
MCP Server Shows "Failed" in Claude
If you see "task ✘ failed" in Claude, check these common issues:
-
Missing API Keys: The most common issue is missing API keys. Check that your ENV_FILE is properly configured:
# Test if ENV_FILE is working ENV_FILE=/path/to/your/.llm.env npx @just-every/mcp-task
-
Incorrect Installation Command: Make sure you're using
-e
for environment variables:# Correct - environment variable passed with -e flag before -- claude mcp add task -s user -e ENV_FILE=$HOME/.llm.env -- npx -y @just-every/mcp-task # Incorrect - trying to pass as argument claude mcp add task -s user -- npx -y @just-every/mcp-task --env ENV_FILE=$HOME/.llm.env
-
Path Issues: ENV_FILE must use absolute paths:
# Good ENV_FILE=/Users/yourname/.llm.env ENV_FILE=$HOME/.llm.env # Bad ENV_FILE=.env ENV_FILE=~/.llm.env # ~ not expanded in some contexts
-
Verify Installation: Check your MCP configuration:
claude mcp list
-
Debug Mode: For detailed error messages, run manually:
ENV_FILE=/path/to/.llm.env npx @just-every/mcp-task
Task Not Progressing
- Check task status with
check_task_status
to see live progress - Look for error messages prefixed with "ERROR:" in the output
- Verify API keys are properly configured
Model Not Found
- Ensure model name is correctly spelled
- Check that required API keys are set for the model provider
- Popular models: claude-opus-4, grok-4, gemini-2.5-pro, o3
Task Cleanup
- Completed tasks are automatically cleaned up after 24 hours
- Use
list_tasks
to see all active and recent tasks - Cancel stuck tasks with
cancel_task
License
MIT
Author
Created by Just Every - Building powerful AI tools for developers.
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。