
MCP Tekmetric
A Model Context Protocol server that allows AI assistants to interact with Tekmetric data, enabling users to query appointment details, vehicle information, repair order status, and parts inventory through natural language.
README
MCP Tekmetric
A Model Context Protocol (MCP) server designed to integrate AI assistants with Tekmetric. This project allows AI tools to interact with your Tekmetric data, enabling automation and intelligent workflows directly from your AI assistant.
Currently, this integration supports read-only actions, allowing your AI to retrieve information from your Tekmetric instance.
Example Usage
Leverage your AI assistant to interact with your Tekmetric data:
- 📅 Check Appointment Details: "What are the details for the appointment scheduled for tomorrow?"
- 🚗 Retrieve Shop Information: "Find the contact information of a Shop."
- 📊 Get Repair Order Status: "What is the current status of repair order #12345?"
Quick Start Guide
Follow these steps to get the MCP Tekmetric server up and running:
1. Authentication Setup
You need a Tekmetric API key to authenticate with the Tekmetric API. Obtain your API key from your Tekmetric account settings (provide link or navigation path if possible).
Set your API key as a system environment variable named TEKMETRIC_API_KEY
:
export TEKMETRIC_API_KEY="your_tekmetric_api_key"
2. Installation
Clone this repository:
git clone https://github.com/patclarke/mcp-tekmetric.git
cd mcp-tekmetric
Install the required dependencies:
pip install -e .
3. Run the MCP Server
Start the Uvicorn server:
uvicorn mcp_tekmetric.servers.main:asgi_app --host 0.0.0.0 --port 8080
This will start the MCP server, making it available for your AI assistant to connect to, typically on http://localhost:8080
.
4. Connect Your AI Assistant
(This section depends heavily on the AI assistant being used. Provide generic guidance or specific instructions for popular assistants if possible).
For VSCode my mcp.json looks like this:
{
"servers": {
"local-tekmetric": {
"type": "sse",
"url": "http://localhost:8080/sse"
}
}
}
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。