MCP Telegram
A TypeScript implementation of an MCP (Model Context Protocol) server for working with Telegram through MTProto
tacticlaunch
README
MCP Telegram
A TypeScript implementation of an MCP (Model Context Protocol) server for working with Telegram through MTProto, built using FastMCP.
Overview
This project provides a set of tools for interacting with Telegram through the MTProto protocol, making them available via an MCP server for use with AI models like Claude.
Installation
# Install dependencies
npm install
# Build the project
npm run build
Usage
CLI Commands
The application provides the following CLI commands:
# Sign in to Telegram
npm run sign-in
# or
npx mcp-telegram sign-in
# Start the MCP server
npm run mcp
# or
npx mcp-telegram mcp [options]
# Logout from Telegram
npm run logout
# or
npx mcp-telegram logout
CLI Options for the mcp
command:
-t, --transport <type>
: Transport type (stdio, sse), defaults to 'stdio'-p, --port <number>
: Port for HTTP/SSE transport, defaults to 3000-e, --endpoint <path>
: Endpoint for SSE transport, defaults to 'mcp'
Starting the MCP Server
Start the MCP server with stdio transport (default, used by Cursor AI):
npm run start
# or
npm run mcp
You can also run the server programmatically:
import server, { startServer } from 'mcp-telegram';
// Start the server with the configuration
startServer(server);
Environment Variables
The application uses the following environment variables:
TELEGRAM_API_ID
: Your Telegram API IDTELEGRAM_API_HASH
: Your Telegram API HashTRANSPORT_TYPE
: Transport type ('stdio', 'http', or 'sse'), defaults to 'stdio'PORT
: Port for HTTP or SSE transports, defaults to 3000ENDPOINT
: Endpoint for SSE transport, defaults to 'mcp'LOG_LEVEL
: Logging level, defaults to 'info'
These can be set in a .env
file in the project root.
Development
Development requires Node.js version 18 or higher.
# Run in development mode
npm run dev
# Lint the code
npm run lint
# Run tests
npm run test
FastMCP Integration
The server is implemented using FastMCP, which provides a modern TypeScript implementation of the Model Context Protocol. It supports stdio and SSE transports, making it compatible with different client integration approaches.
Server Transports
- stdio: Default transport, useful for direct integration with tools like Cursor AI
- sse: Server-Sent Events transport for real-time communication
Available Tools
listDialogs
List available dialogs, chats and channels.
Parameters:
unread
: Boolean, show only unread dialogs (default: false)archived
: Boolean, include archived dialogs (default: false)ignorePinned
: Boolean, ignore pinned dialogs (default: false)
listMessages
List messages in a given dialog, chat or channel.
Parameters:
dialogId
: String, ID of the dialog to list messages fromunread
: Boolean, show only unread messages (default: false)limit
: Number, maximum number of messages to retrieve (default: 100)
Project Structure
src/
├── config.ts # Application configuration
├── index.ts # Main server implementation
├── mcp.ts # CLI entry point
├── tools/ # Tool implementations
│ ├── index.ts # Tools export
│ └── telegramTools.ts # Telegram tools
├── lib/ # Core Telegram functionality
│ ├── index.ts # Module exports
│ ├── telegram.ts # Telegram client functionality
└── utils/ # Utilities
├── errorHandler.ts # Error handling utilities
└── logger.ts # Logging utility
License
This project is licensed under the MIT License - see the LICENSE file for details.
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
@kazuph/mcp-taskmanager
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。

Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。

Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。