MCP Template
A production-ready Python template for building MCP servers with enterprise features including registry integration, configuration management, structured logging, and extensible patterns for tools, resources, and prompts.
README
MCP Template
Production-ready MCP (Model Context Protocol) server template in Python with registry integration, comprehensive configuration management, and extensibility patterns.
Features
- Production-Ready: Enterprise-grade error handling, structured logging, and graceful shutdown
- Registry Integration: Automatic server registration, heartbeats, and deregistration
- Configuration Management: YAML-based config with environment variable overrides and Pydantic validation
- Extensible Architecture: Easy-to-extend base classes for tools, resources, and prompts
- Type Safety: Full type hints throughout the codebase
- Developer Experience: Comprehensive CLI, extensive documentation, and example implementations
- Testing: Unit and integration test examples with pytest
Quick Start
Installation
# Clone or copy this template
cd mcp-template
# Create virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -e ".[dev]"
# Or using requirements.txt
pip install -r requirements-dev.txt
Initialize Configuration
# Initialize default configuration
mcp-template init
# This creates:
# - config/config.yaml (server configuration)
# - .env (environment variables)
Run the Server
# Run with default configuration
mcp-template run
# Run with custom config
mcp-template run --config path/to/config.yaml
# Run in debug mode
mcp-template run --debug
# Validate configuration
mcp-template validate
# Check health
mcp-template health
Project Structure
mcp-template/
├── src/mcp_template/
│ ├── core/ # Core server components
│ │ ├── server.py # Base MCP server implementation
│ │ ├── settings.py # Pydantic settings models
│ │ ├── config_loader.py # Configuration loader
│ │ └── logger.py # Structured logging setup
│ ├── registry/ # Registry integration
│ │ ├── base.py # Registry client interface
│ │ ├── http_client.py # HTTP registry implementation
│ │ └── manager.py # Registry lifecycle manager
│ ├── tools/ # MCP tools
│ │ ├── calculator.py # Example calculator tool
│ │ └── search.py # Example search tool
│ ├── resources/ # MCP resources
│ │ ├── config.py # Configuration resource
│ │ └── status.py # Status resource
│ ├── prompts/ # MCP prompts
│ │ └── example.py # Example prompt
│ ├── app.py # Main application
│ └── cli.py # Command-line interface
├── config/
│ └── config.yaml # Server configuration
├── tests/
│ ├── unit/ # Unit tests
│ └── integration/ # Integration tests
├── pyproject.toml # Project metadata and dependencies
├── requirements.txt # Production dependencies
├── requirements-dev.txt # Development dependencies
├── Makefile # Development commands
└── README.md # This file
Configuration
Configuration File (config/config.yaml)
The main configuration file supports:
- Server settings: Name, version, description, debug mode
- Logging: Level, format (JSON/text), file output
- Registry: URL, authentication, heartbeat settings, metadata
- Tools/Resources/Prompts: Enable/disable specific components
Example:
server:
name: "my-mcp-server"
version: "0.1.0"
description: "My custom MCP server"
logging:
level: "INFO"
format: "json"
registry:
enabled: true
url: "https://registry.example.com/api/v1"
auth:
type: "api_key"
api_key: "${REGISTRY_API_KEY}"
heartbeat:
enabled: true
interval: 60
tools:
enabled:
- "example_calculator"
- "example_search"
Environment Variables
Override configuration using environment variables with double underscore as separator:
# Override server name
export SERVER__NAME="production-server"
# Override registry URL
export REGISTRY__URL="https://prod-registry.example.com"
# Set API key
export REGISTRY__AUTH__API_KEY="your-api-key"
# Override logging level
export LOGGING__LEVEL="DEBUG"
Environment Variables File (.env)
Create a .env file for local development:
# Registry
REGISTRY_API_KEY=your-api-key-here
# Server overrides
SERVER__DEBUG=false
# Logging
LOGGING__LEVEL=INFO
Adding Custom Components
Adding a New Tool
- Create a new file in
src/mcp_template/tools/:
# src/mcp_template/tools/my_tool.py
import mcp.types as types
async def my_tool_handler(arguments: dict) -> str:
"""Handle the tool call."""
# Your implementation here
return "Result"
MY_TOOL_SCHEMA = types.Tool(
name="my_tool",
description="Description of what the tool does",
inputSchema={
"type": "object",
"properties": {
"param1": {
"type": "string",
"description": "Parameter description"
}
},
"required": ["param1"]
}
)
- Register it in
src/mcp_template/app.py:
from .tools.my_tool import my_tool_handler, MY_TOOL_SCHEMA
# In MCPTemplateApp._register_components():
self.server.register_tool(
"my_tool",
my_tool_handler,
MY_TOOL_SCHEMA,
)
- Enable it in
config/config.yaml:
tools:
enabled:
- "my_tool"
Adding a New Resource
Similar pattern - create handler and schema, register in app.py, enable in config.
# src/mcp_template/resources/my_resource.py
import mcp.types as types
async def my_resource_handler(uri: str) -> str:
"""Handle resource read."""
return "Resource data"
MY_RESOURCE_SCHEMA = types.Resource(
uri="myresource://example",
name="My Resource",
description="Resource description",
mimeType="application/json"
)
Adding a New Prompt
# src/mcp_template/prompts/my_prompt.py
import mcp.types as types
async def my_prompt_handler(arguments: dict) -> types.GetPromptResult:
"""Handle prompt request."""
return types.GetPromptResult(
description="Prompt description",
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(
type="text",
text="Prompt text"
)
)
]
)
MY_PROMPT_SCHEMA = types.Prompt(
name="my_prompt",
description="Prompt description",
arguments=[
types.PromptArgument(
name="arg1",
description="Argument description",
required=True
)
]
)
Registry Integration
The template includes a pluggable registry system for server discovery and management.
How It Works
- Registration: On startup, server registers with the registry
- Heartbeat: Periodic heartbeats maintain the registration
- Deregistration: Graceful shutdown deregisters the server
Custom Registry Backend
Implement the RegistryClient interface for custom backends:
from mcp_template.registry.base import RegistryClient
class MyRegistryClient(RegistryClient):
async def register(self, server_info: dict) -> dict:
# Your implementation
pass
async def deregister(self, server_id: str) -> bool:
# Your implementation
pass
# Implement other methods...
Then use it in your application:
from mcp_template.registry.manager import RegistryManager
registry_manager = RegistryManager(settings, client=MyRegistryClient())
Development
Setup Development Environment
# Install with development dependencies
pip install -e ".[dev]"
# Or using make
make install
Running Tests
# Run all tests
pytest
# Run with coverage
pytest --cov
# Run only unit tests
pytest tests/unit
# Run only integration tests
pytest tests/integration -m integration
# Using make
make test
Code Quality
# Format code
make format
# Lint code
make lint
# Type check
make typecheck
# Run all checks
make check
Pre-commit Hooks
# Install pre-commit hooks
pre-commit install
# Run manually
pre-commit run --all-files
Deployment
Docker
Create a Dockerfile:
FROM python:3.11-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY src/ src/
COPY config/ config/
RUN pip install -e .
CMD ["mcp-template", "run"]
Build and run:
docker build -t mcp-template .
docker run -e REGISTRY_API_KEY=your-key mcp-template
Environment-Specific Configuration
Create different config files for each environment:
config/
├── config.yaml # Default
├── config.dev.yaml # Development
├── config.staging.yaml # Staging
└── config.prod.yaml # Production
Run with specific config:
mcp-template run --config config/config.prod.yaml
Monitoring and Observability
Structured Logging
All logs are structured (JSON format by default) for easy parsing:
{
"timestamp": "2024-01-01T12:00:00.000Z",
"level": "info",
"event": "Server started",
"server": "my-server",
"version": "0.1.0"
}
Health Checks
# CLI health check
mcp-template health
# Programmatic health check
from mcp_template.app import create_app
app = create_app()
health = await app.server.health_check()
Troubleshooting
Common Issues
Configuration file not found
# Initialize configuration
mcp-template init
# Or specify path
mcp-template run --config path/to/config.yaml
Registry connection failed
# Check registry health
mcp-template health
# Disable registry temporarily
# In config.yaml:
registry:
enabled: false
Import errors
# Reinstall in editable mode
pip install -e .
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Run code quality checks:
make check - Submit a pull request
License
MIT License - see LICENSE file for details
Resources
Support
For issues, questions, or contributions, please open an issue on GitHub.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。