MCP Test Scratch Server

MCP Test Scratch Server

A Flask-based MCP server designed for testing deployment on Google App Engine. Provides a deeplink checking endpoint that accepts flattened JSON parameters and forwards them as nested objects to external APIs.

Category
访问服务器

README

MCP Server Deployment on Google App Engine This document provides step-by-step instructions to deploy the provided MCP server on Google App Engine.

Files The following files are required for deployment:

main.py: The Python Flask application code.

requirements.txt: A list of Python libraries the server needs.

app.yaml: The configuration file for Google App Engine.

Prerequisites Google Cloud Account: You need an active Google Cloud account with billing enabled.

Google Cloud SDK: Install the Google Cloud SDK on your local machine.

Python: Python 3.9 or newer should be installed.

Text Editor: Any text editor to create and save the files above.

Step 1: Set up your Google Cloud Project Create a new Google Cloud Project or select an existing one.

Open a terminal or command prompt.

Authenticate your Google Cloud SDK by running:

gcloud auth login

Set your project ID:

gcloud config set project YOUR_PROJECT_ID

(Replace YOUR_PROJECT_ID with your actual project ID).

Enable the App Engine Admin API for your project.

Step 2: Create the Files Ensure the three files (main.py, requirements.txt, and app.yaml) are saved in the same directory on your computer.

Step 3: Deploy to Google App Engine Open your terminal and navigate to the directory where you saved the files.

Run the following command to deploy your application:

gcloud app deploy

You will be prompted to choose a region and confirm the deployment. Type Y and press Enter. The deployment process may take a few minutes.

Step 4: Test the Deployed Server Once the deployment is complete, Google Cloud will provide you with a URL for your service, typically in the format https://YOUR_PROJECT_ID.REGION_ID.r.appspot.com.

You can test the endpoint using a curl command from your terminal. This command mimics the request that Intercom will send, with the flattened JSON parameters.

curl --location 'https://YOUR_PROJECT_ID.REGION_ID.r.appspot.com/v2/iw/check-deeplink'
--header 'Content-Type: application/json'
--data '{ "db_name": "NDTVProfit", "user_id": "eb50c9bb-fac4-44c7-b97d-36ab374c5ef8", "campaign_id": "68b2cd88c85096a0c1603cf0", "date": "2025-08-30", "region":"DC1" }'

Remember to replace YOUR_PROJECT_ID and REGION_ID with your specific values. The server should return the expected JSON response from the external API.

This setup ensures that your server is ready to integrate with Intercom, accepting the required flattened schema and forwarding the request as a nested object to the final API endpoint.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选