MCP Tooling Lab

MCP Tooling Lab

A Node.js-based MCP server that enables AI agents to generate embeddings, index documents, and perform semantic vector searches using OpenAI and Chroma. It facilitates the creation of retrieval-augmented generation (RAG) pipelines for internal knowledge assistants and document-based workflows.

Category
访问服务器

README

Executive Overview

This service demonstrates how modern AI systems can securely interact with real data and internal tools using the Model Context Protocol (MCP).

It exposes a small set of AI-accessible capabilities — generating embeddings, indexing documents, and performing semantic search — backed by a vector database. An AI agent can use these tools to retrieve relevant information on demand, rather than relying on static training data.

In practical terms, this pattern enables use cases such as:

  • internal knowledge assistants
  • customer support copilots
  • AI-powered search over company documents
  • agent workflows that safely access enterprise data

This project mirrors how AI tooling is deployed in production environments where models must interact with real systems in a controlled, auditable way.

MCP Tooling Lab (Node.js)

This project implements a custom Model Context Protocol (MCP) server in Node.js that exposes tools for:

  • generating embeddings using OpenAI
  • indexing documents into a vector database (Chroma)
  • performing semantic vector search with optional metadata filters

The server is designed to be used by MCP-compatible hosts (e.g. Claude Desktop) and demonstrates real-world agent tooling patterns used in modern AI systems.


Why this exists

This lab demonstrates hands-on experience with:

  • MCP server implementation
  • tool schemas and validation
  • embedding pipelines
  • vector database integration
  • agent-accessible retrieval infrastructure

This mirrors how AI tooling is deployed in customer-facing and forward-deployed engineering contexts.


Tools exposed

embed_text

Generates OpenAI embeddings for an array of input strings.

Input

{
  "texts": ["string", "..."]
}

index_documents

Embeds and indexes documents into a Chroma collection.

Input

{
  "docs": [
    {
      "id": "doc-id",
      "text": "document text",
      "metadata": { "optional": "metadata" }
    }
  ]
}

vector_search

Performs semantic search over indexed documents using embeddings.

Input

{
  "query": "search query",
  "topK": 5,
  "where": { "optional": "metadata filter" }
}

Tech stack

  • Node.js + TypeScript
  • OpenAI Embeddings (text-embedding-3-small)
  • Chroma vector database
  • MCP SDK (@modelcontextprotocol/sdk)
  • Zod for schema validation
  • Docker (for local Chroma)

Running locally

1. Start Chroma

docker run --rm -p 8000:8000 chromadb/chroma

2. Install dependencies

pnpm install

3. Configure environment

Create a .env file:

OPENAI_API_KEY=your_openai_key
CHROMA_URL=http://localhost:8000
CHROMA_COLLECTION=mcp_tooling_lab
OPENAI_EMBED_MODEL=text-embedding-3-small

4. Run the MCP server

pnpm dev

Using with Claude Desktop (MCP host)

Claude Desktop launches MCP servers in an isolated environment. Required environment variables must be passed explicitly via the config file.

Example claude_desktop_config.json

{
  "mcpServers": {
    "mcp-tooling-lab": {
      "command": "node",
      "args": [
        "/ABSOLUTE/PATH/TO/dist/server.js"
      ],
      "env": {
        "OPENAI_API_KEY": "your_openai_key"
      }
    }
  }
}

Note: The server must be built before use with Claude Desktop:

pnpm build

Example workflow

  1. Index documents:

    • Refunds are allowed within 30 days.
    • Enterprise customers receive priority support.
  2. Query:

    • What is the refund policy?

The host agent will automatically call the appropriate MCP tools to retrieve context and generate a grounded response.


Next steps

Planned extensions in follow-up labs:

  • RAG pipeline with evaluation
  • Agentic workflows using function calling + retrieval
  • Metadata filtering and chain-style orchestration
  • PGVector-backed retrieval

Disclaimer

This is a learning and demonstration project intended to showcase MCP-based AI tooling patterns.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选