MCP TypeScript Demo Server
A TypeScript implementation of the Model Context Protocol server that enables searching arXiv papers and extracting paper information through standardized client-server communication.
Tools
get_current_weather
Get weather info for a given city.
get_current_date
获取当前日期, 如果用户没有提供日期, 则返回当前日期, 如果用户提供的是相对单位, 如前天, 昨天, 明天, 则返回相对单位后的日期
README
MCP Demo - TypeScript Implementation
This is a TypeScript implementation of the MCP: Build Rich-Context AI Apps with Anthropic course from DeepLearning.AI.
Overview
This project demonstrates the Model Context Protocol (MCP) implementation with streamable HTTP capabilities. MCP is an open protocol that standardizes how LLM applications can access context through tools and data resources using a client-server architecture.
⚠️ This project is for educational and demo purposes only.
Features
- MCP client-server architecture implementation
- Streamable HTTP communication
- arXiv paper search functionality
- Paper information extraction
- Tool selection and argument extraction
- Prompt template management
Prerequisites
- Node.js (v16 or higher)
- Yarn package manager
- Anthropic API key
Setup
-
Clone the repository
git clone <repository-url> cd mcp-demo -
Install dependencies
yarn install -
Environment Configuration
Create a
.envfile in the root directory:ANTHROPIC_API_KEY=<your_anthropic_api_key_here>Important: Replace
<your_anthropic_api_key_here>with your actual Anthropic API key. -
Build the project
yarn build
Project Structure
mcp-demo/
├── src/
│ ├── client.ts # MCP client implementation
│ ├── server.ts # MCP server implementation
│ └── index.ts # Core functionality and utilities
├── package.json # Dependencies and scripts
├── tsconfig.json # TypeScript configuration
├── yarn.lock # Locked dependencies
└── README.md # This file
Usage
Starting the MCP Server
yarn start:server
Starting the MCP Client
yarn start:client
Running Both (Development)
yarn dev
Available Tools
The MCP server provides the following tools:
-
search_papers- Search for papers on arXiv- Arguments:
topic(string): The topic to search formax_results(number, optional): Maximum number of results (default: 5)
- Arguments:
-
extract_info- Extract information from a specific paper- Arguments:
paper_id(string): The ID of the paper to look for
- Arguments:
API Reference
search_papers(topic: string, max_results?: number)
Searches for papers on arXiv based on a topic and returns their information.
extract_info(paper_id: string)
Searches for information about a specific paper by ID from arXiv.
getToolSelectionPrompt(toolList: string, userQuery: string)
Generates a detailed prompt for tool selection and argument extraction.
Course Reference
This implementation is based on the MCP: Build Rich-Context AI Apps with Anthropic course by DeepLearning.AI in partnership with Anthropic. The course covers:
- Core concepts of MCP
- Client-server architecture
- Building MCP-compatible applications
- Connecting to third-party servers
- Deploying MCP servers remotely
For the complete course content, visit: https://learn.deeplearning.ai/courses/mcp-build-rich-context-ai-apps-with-anthropic
Contributing
This is a demo project for educational purposes. Feel free to experiment and modify the code to learn more about MCP implementation.
License
This project is for educational purposes only. Please refer to the original course materials for licensing information.
Support
For questions about the MCP protocol or the original course, please refer to:
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。