MCP TypeScript Demo Server

MCP TypeScript Demo Server

A TypeScript implementation of the Model Context Protocol server that enables searching arXiv papers and extracting paper information through standardized client-server communication.

Category
访问服务器

Tools

get_current_weather

Get weather info for a given city.

get_current_date

获取当前日期, 如果用户没有提供日期, 则返回当前日期, 如果用户提供的是相对单位, 如前天, 昨天, 明天, 则返回相对单位后的日期

README

MCP Demo - TypeScript Implementation

This is a TypeScript implementation of the MCP: Build Rich-Context AI Apps with Anthropic course from DeepLearning.AI.

Overview

This project demonstrates the Model Context Protocol (MCP) implementation with streamable HTTP capabilities. MCP is an open protocol that standardizes how LLM applications can access context through tools and data resources using a client-server architecture.

⚠️ This project is for educational and demo purposes only.

Features

  • MCP client-server architecture implementation
  • Streamable HTTP communication
  • arXiv paper search functionality
  • Paper information extraction
  • Tool selection and argument extraction
  • Prompt template management

Prerequisites

  • Node.js (v16 or higher)
  • Yarn package manager
  • Anthropic API key

Setup

  1. Clone the repository

    git clone <repository-url>
    cd mcp-demo
    
  2. Install dependencies

    yarn install
    
  3. Environment Configuration

    Create a .env file in the root directory:

    ANTHROPIC_API_KEY=<your_anthropic_api_key_here>
    

    Important: Replace <your_anthropic_api_key_here> with your actual Anthropic API key.

  4. Build the project

    yarn build
    

Project Structure

mcp-demo/
├── src/
│   ├── client.ts      # MCP client implementation
│   ├── server.ts      # MCP server implementation
│   └── index.ts       # Core functionality and utilities
├── package.json       # Dependencies and scripts
├── tsconfig.json      # TypeScript configuration
├── yarn.lock          # Locked dependencies
└── README.md          # This file

Usage

Starting the MCP Server

yarn start:server

Starting the MCP Client

yarn start:client

Running Both (Development)

yarn dev

Available Tools

The MCP server provides the following tools:

  1. search_papers - Search for papers on arXiv

    • Arguments:
      • topic (string): The topic to search for
      • max_results (number, optional): Maximum number of results (default: 5)
  2. extract_info - Extract information from a specific paper

    • Arguments:
      • paper_id (string): The ID of the paper to look for

API Reference

search_papers(topic: string, max_results?: number)

Searches for papers on arXiv based on a topic and returns their information.

extract_info(paper_id: string)

Searches for information about a specific paper by ID from arXiv.

getToolSelectionPrompt(toolList: string, userQuery: string)

Generates a detailed prompt for tool selection and argument extraction.

Course Reference

This implementation is based on the MCP: Build Rich-Context AI Apps with Anthropic course by DeepLearning.AI in partnership with Anthropic. The course covers:

  • Core concepts of MCP
  • Client-server architecture
  • Building MCP-compatible applications
  • Connecting to third-party servers
  • Deploying MCP servers remotely

For the complete course content, visit: https://learn.deeplearning.ai/courses/mcp-build-rich-context-ai-apps-with-anthropic

Contributing

This is a demo project for educational purposes. Feel free to experiment and modify the code to learn more about MCP implementation.

License

This project is for educational purposes only. Please refer to the original course materials for licensing information.

Support

For questions about the MCP protocol or the original course, please refer to:

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选