MCP Utility Tools
A collection of tools that enhance MCP-based workflows with caching, retry logic, batch operations, and rate limiting capabilities.
README
MCP Utility Tools
A collection of utility tools for the Model Context Protocol (MCP) that provide caching, retry logic, batch operations, and rate limiting capabilities to enhance any MCP-based workflow.
Features
- 🔄 Retry with Exponential Backoff - Automatically retry failed operations with configurable delays
- 💾 TTL-based Caching - Cache expensive operations with automatic expiration
- 🚀 Batch Operations - Process multiple operations in parallel with concurrency control
- 🚦 Rate Limiting - Prevent API abuse with sliding window rate limiting
- 🔍 Full TypeScript Support - Type-safe with comprehensive TypeScript definitions
Installation
npm install mcp-utility-tools
# or with yarn
yarn add mcp-utility-tools
# or with bun
bun add mcp-utility-tools
Quick Start
1. Add to Claude Desktop
Add the utility tools to your Claude Desktop configuration:
{
"mcpServers": {
"utility-tools": {
"command": "npx",
"args": ["mcp-utility-tools"]
}
}
}
2. Use with Claude
Once configured, Claude can use these tools to enhance any workflow:
# Check cache before expensive operation
cache_result = mcp_cache_get(key="api-response", namespace="github")
if not cache_result["found"]:
# Fetch data with retry
response = fetch_with_retry("https://api.github.com/user/repos")
# Cache for 5 minutes
mcp_cache_put(
key="api-response",
value=response,
ttl_seconds=300,
namespace="github"
)
Available Tools
🔄 retry_operation
Retry operations with exponential backoff and jitter.
{
"tool": "retry_operation",
"arguments": {
"operation_id": "unique-operation-id",
"operation_type": "http_request",
"operation_data": {
"url": "https://api.example.com/data",
"method": "GET"
},
"max_retries": 3,
"initial_delay_ms": 1000
}
}
Features:
- Tracks retry attempts across multiple calls
- Exponential backoff with configurable delays
- Optional jitter to prevent thundering herd
- Prevents duplicate retries for successful operations
💾 Cache Operations
cache_get
Retrieve values from cache with TTL support.
{
"tool": "cache_get",
"arguments": {
"key": "user-data-123",
"namespace": "users"
}
}
cache_put
Store values with automatic expiration.
{
"tool": "cache_put",
"arguments": {
"key": "user-data-123",
"value": { "name": "John", "role": "admin" },
"ttl_seconds": 300,
"namespace": "users"
}
}
Features:
- Namespace support to prevent key collisions
- Automatic cleanup of expired entries
- Configurable TTL (1 second to 24 hours)
- Memory-efficient storage
🚀 batch_operation
Process multiple operations with controlled concurrency.
{
"tool": "batch_operation",
"arguments": {
"operations": [
{ "id": "op1", "type": "fetch", "data": { "url": "/api/1" } },
{ "id": "op2", "type": "fetch", "data": { "url": "/api/2" } },
{ "id": "op3", "type": "fetch", "data": { "url": "/api/3" } }
],
"concurrency": 2,
"timeout_ms": 5000,
"continue_on_error": true,
"use_cache": true
}
}
Features:
- Configurable concurrency (1-20 operations)
- Per-operation timeout
- Continue or fail-fast on errors
- Optional result caching
- Maintains order of results
🚦 rate_limit_check
Implement sliding window rate limiting.
{
"tool": "rate_limit_check",
"arguments": {
"resource": "api.github.com",
"max_requests": 60,
"window_seconds": 60,
"increment": true
}
}
Features:
- Per-resource tracking
- Sliding window algorithm
- Automatic reset after time window
- Check without incrementing option
Integration Examples
With GitHub MCP Server
// Cache GitHub API responses
async function getRepositoryWithCache(owner: string, repo: string) {
const cacheKey = `github:${owner}/${repo}`;
// Check cache first
const cached = await mcp_cache_get({
key: cacheKey,
namespace: "github"
});
if (cached.found) {
return cached.value;
}
// Fetch with retry
const data = await retryableGitHubCall(owner, repo);
// Cache for 10 minutes
await mcp_cache_put({
key: cacheKey,
value: data,
ttl_seconds: 600,
namespace: "github"
});
return data;
}
With Slack MCP Server
// Rate-limited Slack notifications
async function sendSlackNotifications(messages: string[], channel: string) {
for (const message of messages) {
// Check rate limit
const canSend = await mcp_rate_limit_check({
resource: `slack:${channel}`,
max_requests: 10,
window_seconds: 60,
increment: true
});
if (!canSend.allowed) {
console.log(`Rate limited. Retry in ${canSend.reset_in_seconds}s`);
await sleep(canSend.reset_in_seconds * 1000);
}
await mcp_slack_post_message({
channel_id: channel,
text: message
});
}
}
Architecture
┌─────────────────┐ ┌──────────────────┐ ┌─────────────────┐
│ │ │ │ │ │
│ Claude/Client │────▶│ MCP Utility Tools│────▶│ Cache Storage │
│ │ │ │ │ (In-Memory) │
└─────────────────┘ └──────────────────┘ └─────────────────┘
│ │
│ │
▼ ▼
┌─────────────────┐ ┌──────────────────┐
│ Other MCP │ │ Retry/Rate │
│ Servers │ │ Limit Tracking │
└─────────────────┘ └──────────────────┘
Development
# Clone the repository
git clone https://github.com/haasonsaas/mcp-utility-tools.git
cd mcp-utility-tools
# Install dependencies
npm install
# Build the project
npm run build
# Run tests
npm test
# Run in development mode
npm run dev
Testing
Run the comprehensive test suite:
# Unit tests
npm test
# Integration tests with test harness
npm run test:integration
# Test with MCP Inspector
npx @modelcontextprotocol/inspector build/index-v2.js
Contributing
We welcome contributions! Please see our Contributing Guide for details.
Areas for Contribution
- 🔌 Storage Backends: Add Redis, SQLite support
- 🔧 New Tools: Circuit breakers, request deduplication
- 📊 Metrics: Add performance tracking and analytics
- 🌐 Examples: More integration examples with other MCP servers
License
MIT © Jonathan Haas
Acknowledgments
Built on top of the Model Context Protocol SDK by Anthropic.
<p align="center"> Made with ❤️ for the MCP community </p>
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。