MCP Utility Tools

MCP Utility Tools

A collection of tools that enhance MCP-based workflows with caching, retry logic, batch operations, and rate limiting capabilities.

Category
访问服务器

README

MCP Utility Tools

CI npm version License: MIT

A collection of utility tools for the Model Context Protocol (MCP) that provide caching, retry logic, batch operations, and rate limiting capabilities to enhance any MCP-based workflow.

Features

  • 🔄 Retry with Exponential Backoff - Automatically retry failed operations with configurable delays
  • 💾 TTL-based Caching - Cache expensive operations with automatic expiration
  • 🚀 Batch Operations - Process multiple operations in parallel with concurrency control
  • 🚦 Rate Limiting - Prevent API abuse with sliding window rate limiting
  • 🔍 Full TypeScript Support - Type-safe with comprehensive TypeScript definitions

Installation

npm install mcp-utility-tools

# or with yarn
yarn add mcp-utility-tools

# or with bun
bun add mcp-utility-tools

Quick Start

1. Add to Claude Desktop

Add the utility tools to your Claude Desktop configuration:

{
  "mcpServers": {
    "utility-tools": {
      "command": "npx",
      "args": ["mcp-utility-tools"]
    }
  }
}

2. Use with Claude

Once configured, Claude can use these tools to enhance any workflow:

# Check cache before expensive operation
cache_result = mcp_cache_get(key="api-response", namespace="github")

if not cache_result["found"]:
    # Fetch data with retry
    response = fetch_with_retry("https://api.github.com/user/repos")
    
    # Cache for 5 minutes
    mcp_cache_put(
        key="api-response",
        value=response,
        ttl_seconds=300,
        namespace="github"
    )

Available Tools

🔄 retry_operation

Retry operations with exponential backoff and jitter.

{
  "tool": "retry_operation",
  "arguments": {
    "operation_id": "unique-operation-id",
    "operation_type": "http_request",
    "operation_data": {
      "url": "https://api.example.com/data",
      "method": "GET"
    },
    "max_retries": 3,
    "initial_delay_ms": 1000
  }
}

Features:

  • Tracks retry attempts across multiple calls
  • Exponential backoff with configurable delays
  • Optional jitter to prevent thundering herd
  • Prevents duplicate retries for successful operations

💾 Cache Operations

cache_get

Retrieve values from cache with TTL support.

{
  "tool": "cache_get",
  "arguments": {
    "key": "user-data-123",
    "namespace": "users"
  }
}

cache_put

Store values with automatic expiration.

{
  "tool": "cache_put",
  "arguments": {
    "key": "user-data-123",
    "value": { "name": "John", "role": "admin" },
    "ttl_seconds": 300,
    "namespace": "users"
  }
}

Features:

  • Namespace support to prevent key collisions
  • Automatic cleanup of expired entries
  • Configurable TTL (1 second to 24 hours)
  • Memory-efficient storage

🚀 batch_operation

Process multiple operations with controlled concurrency.

{
  "tool": "batch_operation",
  "arguments": {
    "operations": [
      { "id": "op1", "type": "fetch", "data": { "url": "/api/1" } },
      { "id": "op2", "type": "fetch", "data": { "url": "/api/2" } },
      { "id": "op3", "type": "fetch", "data": { "url": "/api/3" } }
    ],
    "concurrency": 2,
    "timeout_ms": 5000,
    "continue_on_error": true,
    "use_cache": true
  }
}

Features:

  • Configurable concurrency (1-20 operations)
  • Per-operation timeout
  • Continue or fail-fast on errors
  • Optional result caching
  • Maintains order of results

🚦 rate_limit_check

Implement sliding window rate limiting.

{
  "tool": "rate_limit_check",
  "arguments": {
    "resource": "api.github.com",
    "max_requests": 60,
    "window_seconds": 60,
    "increment": true
  }
}

Features:

  • Per-resource tracking
  • Sliding window algorithm
  • Automatic reset after time window
  • Check without incrementing option

Integration Examples

With GitHub MCP Server

// Cache GitHub API responses
async function getRepositoryWithCache(owner: string, repo: string) {
  const cacheKey = `github:${owner}/${repo}`;
  
  // Check cache first
  const cached = await mcp_cache_get({
    key: cacheKey,
    namespace: "github"
  });
  
  if (cached.found) {
    return cached.value;
  }
  
  // Fetch with retry
  const data = await retryableGitHubCall(owner, repo);
  
  // Cache for 10 minutes
  await mcp_cache_put({
    key: cacheKey,
    value: data,
    ttl_seconds: 600,
    namespace: "github"
  });
  
  return data;
}

With Slack MCP Server

// Rate-limited Slack notifications
async function sendSlackNotifications(messages: string[], channel: string) {
  for (const message of messages) {
    // Check rate limit
    const canSend = await mcp_rate_limit_check({
      resource: `slack:${channel}`,
      max_requests: 10,
      window_seconds: 60,
      increment: true
    });
    
    if (!canSend.allowed) {
      console.log(`Rate limited. Retry in ${canSend.reset_in_seconds}s`);
      await sleep(canSend.reset_in_seconds * 1000);
    }
    
    await mcp_slack_post_message({
      channel_id: channel,
      text: message
    });
  }
}

Architecture

┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│                 │     │                  │     │                 │
│  Claude/Client  │────▶│ MCP Utility Tools│────▶│  Cache Storage  │
│                 │     │                  │     │   (In-Memory)   │
└─────────────────┘     └──────────────────┘     └─────────────────┘
         │                       │
         │                       │
         ▼                       ▼
┌─────────────────┐     ┌──────────────────┐
│  Other MCP      │     │  Retry/Rate      │
│  Servers        │     │  Limit Tracking  │
└─────────────────┘     └──────────────────┘

Development

# Clone the repository
git clone https://github.com/haasonsaas/mcp-utility-tools.git
cd mcp-utility-tools

# Install dependencies
npm install

# Build the project
npm run build

# Run tests
npm test

# Run in development mode
npm run dev

Testing

Run the comprehensive test suite:

# Unit tests
npm test

# Integration tests with test harness
npm run test:integration

# Test with MCP Inspector
npx @modelcontextprotocol/inspector build/index-v2.js

Contributing

We welcome contributions! Please see our Contributing Guide for details.

Areas for Contribution

  • 🔌 Storage Backends: Add Redis, SQLite support
  • 🔧 New Tools: Circuit breakers, request deduplication
  • 📊 Metrics: Add performance tracking and analytics
  • 🌐 Examples: More integration examples with other MCP servers

License

MIT © Jonathan Haas

Acknowledgments

Built on top of the Model Context Protocol SDK by Anthropic.


<p align="center"> Made with ❤️ for the MCP community </p>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选
mcp-server-qdrant

mcp-server-qdrant

这个仓库展示了如何为向量搜索引擎 Qdrant 创建一个 MCP (Managed Control Plane) 服务器的示例。

官方
精选
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选