MCP Utility Tools

MCP Utility Tools

A collection of tools that enhance MCP-based workflows with caching, retry logic, batch operations, and rate limiting capabilities.

Category
访问服务器

README

MCP Utility Tools

CI npm version License: MIT

A collection of utility tools for the Model Context Protocol (MCP) that provide caching, retry logic, batch operations, and rate limiting capabilities to enhance any MCP-based workflow.

Features

  • 🔄 Retry with Exponential Backoff - Automatically retry failed operations with configurable delays
  • 💾 TTL-based Caching - Cache expensive operations with automatic expiration
  • 🚀 Batch Operations - Process multiple operations in parallel with concurrency control
  • 🚦 Rate Limiting - Prevent API abuse with sliding window rate limiting
  • 🔍 Full TypeScript Support - Type-safe with comprehensive TypeScript definitions

Installation

npm install mcp-utility-tools

# or with yarn
yarn add mcp-utility-tools

# or with bun
bun add mcp-utility-tools

Quick Start

1. Add to Claude Desktop

Add the utility tools to your Claude Desktop configuration:

{
  "mcpServers": {
    "utility-tools": {
      "command": "npx",
      "args": ["mcp-utility-tools"]
    }
  }
}

2. Use with Claude

Once configured, Claude can use these tools to enhance any workflow:

# Check cache before expensive operation
cache_result = mcp_cache_get(key="api-response", namespace="github")

if not cache_result["found"]:
    # Fetch data with retry
    response = fetch_with_retry("https://api.github.com/user/repos")
    
    # Cache for 5 minutes
    mcp_cache_put(
        key="api-response",
        value=response,
        ttl_seconds=300,
        namespace="github"
    )

Available Tools

🔄 retry_operation

Retry operations with exponential backoff and jitter.

{
  "tool": "retry_operation",
  "arguments": {
    "operation_id": "unique-operation-id",
    "operation_type": "http_request",
    "operation_data": {
      "url": "https://api.example.com/data",
      "method": "GET"
    },
    "max_retries": 3,
    "initial_delay_ms": 1000
  }
}

Features:

  • Tracks retry attempts across multiple calls
  • Exponential backoff with configurable delays
  • Optional jitter to prevent thundering herd
  • Prevents duplicate retries for successful operations

💾 Cache Operations

cache_get

Retrieve values from cache with TTL support.

{
  "tool": "cache_get",
  "arguments": {
    "key": "user-data-123",
    "namespace": "users"
  }
}

cache_put

Store values with automatic expiration.

{
  "tool": "cache_put",
  "arguments": {
    "key": "user-data-123",
    "value": { "name": "John", "role": "admin" },
    "ttl_seconds": 300,
    "namespace": "users"
  }
}

Features:

  • Namespace support to prevent key collisions
  • Automatic cleanup of expired entries
  • Configurable TTL (1 second to 24 hours)
  • Memory-efficient storage

🚀 batch_operation

Process multiple operations with controlled concurrency.

{
  "tool": "batch_operation",
  "arguments": {
    "operations": [
      { "id": "op1", "type": "fetch", "data": { "url": "/api/1" } },
      { "id": "op2", "type": "fetch", "data": { "url": "/api/2" } },
      { "id": "op3", "type": "fetch", "data": { "url": "/api/3" } }
    ],
    "concurrency": 2,
    "timeout_ms": 5000,
    "continue_on_error": true,
    "use_cache": true
  }
}

Features:

  • Configurable concurrency (1-20 operations)
  • Per-operation timeout
  • Continue or fail-fast on errors
  • Optional result caching
  • Maintains order of results

🚦 rate_limit_check

Implement sliding window rate limiting.

{
  "tool": "rate_limit_check",
  "arguments": {
    "resource": "api.github.com",
    "max_requests": 60,
    "window_seconds": 60,
    "increment": true
  }
}

Features:

  • Per-resource tracking
  • Sliding window algorithm
  • Automatic reset after time window
  • Check without incrementing option

Integration Examples

With GitHub MCP Server

// Cache GitHub API responses
async function getRepositoryWithCache(owner: string, repo: string) {
  const cacheKey = `github:${owner}/${repo}`;
  
  // Check cache first
  const cached = await mcp_cache_get({
    key: cacheKey,
    namespace: "github"
  });
  
  if (cached.found) {
    return cached.value;
  }
  
  // Fetch with retry
  const data = await retryableGitHubCall(owner, repo);
  
  // Cache for 10 minutes
  await mcp_cache_put({
    key: cacheKey,
    value: data,
    ttl_seconds: 600,
    namespace: "github"
  });
  
  return data;
}

With Slack MCP Server

// Rate-limited Slack notifications
async function sendSlackNotifications(messages: string[], channel: string) {
  for (const message of messages) {
    // Check rate limit
    const canSend = await mcp_rate_limit_check({
      resource: `slack:${channel}`,
      max_requests: 10,
      window_seconds: 60,
      increment: true
    });
    
    if (!canSend.allowed) {
      console.log(`Rate limited. Retry in ${canSend.reset_in_seconds}s`);
      await sleep(canSend.reset_in_seconds * 1000);
    }
    
    await mcp_slack_post_message({
      channel_id: channel,
      text: message
    });
  }
}

Architecture

┌─────────────────┐     ┌──────────────────┐     ┌─────────────────┐
│                 │     │                  │     │                 │
│  Claude/Client  │────▶│ MCP Utility Tools│────▶│  Cache Storage  │
│                 │     │                  │     │   (In-Memory)   │
└─────────────────┘     └──────────────────┘     └─────────────────┘
         │                       │
         │                       │
         ▼                       ▼
┌─────────────────┐     ┌──────────────────┐
│  Other MCP      │     │  Retry/Rate      │
│  Servers        │     │  Limit Tracking  │
└─────────────────┘     └──────────────────┘

Development

# Clone the repository
git clone https://github.com/haasonsaas/mcp-utility-tools.git
cd mcp-utility-tools

# Install dependencies
npm install

# Build the project
npm run build

# Run tests
npm test

# Run in development mode
npm run dev

Testing

Run the comprehensive test suite:

# Unit tests
npm test

# Integration tests with test harness
npm run test:integration

# Test with MCP Inspector
npx @modelcontextprotocol/inspector build/index-v2.js

Contributing

We welcome contributions! Please see our Contributing Guide for details.

Areas for Contribution

  • 🔌 Storage Backends: Add Redis, SQLite support
  • 🔧 New Tools: Circuit breakers, request deduplication
  • 📊 Metrics: Add performance tracking and analytics
  • 🌐 Examples: More integration examples with other MCP servers

License

MIT © Jonathan Haas

Acknowledgments

Built on top of the Model Context Protocol SDK by Anthropic.


<p align="center"> Made with ❤️ for the MCP community </p>

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选