MCP Veo 3 Video Generation Server
Enables video generation from text prompts or images using Google's Veo 3 API. Supports multiple models, audio generation, and various aspect ratios for creating high-quality videos.
README
MCP Veo 3 Video Generation Server
A Model Context Protocol (MCP) server that provides video generation capabilities using Google's Veo 3 API through the Gemini API. Generate high-quality videos from text prompts or images with realistic motion and audio.
Features
- 🎬 Text-to-Video: Generate videos from descriptive text prompts
- 🖼️ Image-to-Video: Animate static images with motion prompts
- 🎵 Audio Generation: Native audio generation with Veo 3 models
- 🎨 Multiple Models: Support for Veo 3, Veo 3 Fast, and Veo 2
- 📐 Aspect Ratios: Widescreen (16:9) and portrait (9:16) support
- ❌ Negative Prompts: Specify what to avoid in generated videos
- 📁 File Management: List and manage generated videos
- ⚡ Async Processing: Non-blocking video generation with progress tracking
Supported Models
| Model | Description | Speed | Quality | Audio |
|---|---|---|---|---|
veo-3.0-generate-preview |
Latest Veo 3 with highest quality | Slower | Highest | ✅ |
veo-3.0-fast-generate-preview |
Optimized for speed and business use | Faster | High | ✅ |
veo-2.0-generate-001 |
Previous generation model | Medium | Good | ❌ |
📦 Installation Options
# Run without installing (recommended)
uvx mcp-veo3 --output-dir ~/Videos/Generated
# Install globally
pip install mcp-veo3
# Development install
git clone && cd mcp-veo3 && uv sync
Installation
Option 1: Direct Usage (Recommended)
# No installation needed - run directly with uvx
uvx mcp-veo3 --output-dir ~/Videos/Generated
Option 2: Development Setup
-
Clone this directory:
git clone https://github.com/dayongd1/mcp-veo3 cd mcp-veo3 -
Install with uv:
uv syncOr use the automated setup:
python setup.py -
Set up API key:
- Get your Gemini API key from Google AI Studio
- Create
.envfile:cp env_example.txt .env - Edit
.envand add yourGEMINI_API_KEY - Or set environment variable:
export GEMINI_API_KEY='your_key'
Configuration
Environment Variables
Create a .env file with the following variables:
# Required
GEMINI_API_KEY=your_gemini_api_key_here
# Optional
DEFAULT_OUTPUT_DIR=generated_videos
DEFAULT_MODEL=veo-3.0-generate-preview
DEFAULT_ASPECT_RATIO=16:9
PERSON_GENERATION=dont_allow
POLL_INTERVAL=10
MAX_POLL_TIME=600
MCP Client Configuration
Option 1: Using uvx (Recommended - after PyPI publication)
{
"mcpServers": {
"veo3": {
"command": "uvx",
"args": ["mcp-veo3", "--output-dir", "~/Videos/Generated"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Option 2: Using uv run (Development)
{
"mcpServers": {
"veo3": {
"command": "uv",
"args": ["run", "--directory", "/path/to/mcp-veo3", "mcp-veo3", "--output-dir", "~/Videos/Generated"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
Option 3: Direct Python
{
"mcpServers": {
"veo3": {
"command": "python",
"args": ["/path/to/mcp-veo3/mcp_veo3.py", "--output-dir", "~/Videos/Generated"],
"env": {
"GEMINI_API_KEY": "your_api_key_here"
}
}
}
}
CLI Arguments:
--output-dir(required): Directory to save generated videos--api-key(optional): Gemini API key (overrides environment variable)
Available Tools
1. generate_video
Generate a video from a text prompt.
Parameters:
prompt(required): Text description of the videomodel(optional): Model to use (default: veo-3.0-generate-preview)negative_prompt(optional): What to avoid in the videoaspect_ratio(optional): 16:9 or 9:16 (default: 16:9)output_dir(optional): Directory to save videos (default: generated_videos)
Example:
{
"prompt": "A close up of two people staring at a cryptic drawing on a wall, torchlight flickering. A man murmurs, 'This must be it. That's the secret code.' The woman looks at him and whispering excitedly, 'What did you find?'",
"model": "veo-3.0-generate-preview",
"aspect_ratio": "16:9"
}
2. generate_video_from_image
Generate a video from a starting image and motion prompt.
Parameters:
prompt(required): Text description of the desired motion/actionimage_path(required): Path to the starting image filemodel(optional): Model to use (default: veo-3.0-generate-preview)negative_prompt(optional): What to avoid in the videoaspect_ratio(optional): 16:9 or 9:16 (default: 16:9)output_dir(optional): Directory to save videos (default: generated_videos)
Example:
{
"prompt": "The person in the image starts walking forward with a confident stride",
"image_path": "./images/person_standing.jpg",
"model": "veo-3.0-generate-preview"
}
3. list_generated_videos
List all generated videos in the output directory.
Parameters:
output_dir(optional): Directory to list videos from (default: generated_videos)
4. get_video_info
Get detailed information about a video file.
Parameters:
video_path(required): Path to the video file
Usage Examples
Basic Text-to-Video Generation
# Through MCP client
result = await mcp_client.call_tool("generate_video", {
"prompt": "A majestic waterfall in a lush forest with sunlight filtering through the trees",
"model": "veo-3.0-generate-preview"
})
Image-to-Video with Negative Prompt
result = await mcp_client.call_tool("generate_video_from_image", {
"prompt": "The ocean waves gently crash against the shore",
"image_path": "./beach_scene.jpg",
"negative_prompt": "people, buildings, artificial structures",
"aspect_ratio": "16:9"
})
Creative Animation
result = await mcp_client.call_tool("generate_video", {
"prompt": "A stylized animation of a paper airplane flying through a colorful abstract landscape",
"model": "veo-3.0-fast-generate-preview",
"aspect_ratio": "16:9"
})
Prompt Writing Tips
Effective Prompts
- Be specific: Include details about lighting, mood, camera angles
- Describe motion: Specify the type of movement you want
- Set the scene: Include environment and atmospheric details
- Mention style: Cinematic, realistic, animated, etc.
Example Prompts
Cinematic Realism:
A tracking drone view of a red convertible driving through Palm Springs in the 1970s, warm golden hour sunlight, long shadows, cinematic camera movement
Creative Animation:
A stylized animation of a large oak tree with leaves blowing vigorously in strong wind, peaceful countryside setting, warm lighting
Dialogue Scene:
Close-up of two people having an intense conversation in a dimly lit room, dramatic lighting, one person gesturing emphatically while speaking
Negative Prompts
Describe what you don't want to see:
- ❌ Don't use "no" or "don't":
"no cars" - ✅ Do describe unwanted elements:
"cars, vehicles, traffic"
Limitations
- Generation Time: 11 seconds to 6 minutes depending on complexity
- Video Length: 8 seconds maximum
- Resolution: 720p output
- Storage: Videos are stored on Google's servers for 2 days only
- Regional Restrictions: Person generation defaults to "dont_allow" in EU/UK/CH/MENA
- Watermarking: All videos include SynthID watermarks
🚨 Troubleshooting
"API key not found"
# Set your Gemini API key
export GEMINI_API_KEY='your_api_key_here'
# Or add to .env file
echo "GEMINI_API_KEY=your_api_key_here" >> .env
"Output directory not accessible"
# Ensure the output directory exists and is writable
mkdir -p ~/Videos/Generated
chmod 755 ~/Videos/Generated
"Video generation timeout"
# Try using the fast model for testing
uvx mcp-veo3 --output-dir ~/Videos
# Then use: model="veo-3.0-fast-generate-preview"
"Import errors"
# Install/update dependencies
uv sync
# Or with pip
pip install -r requirements.txt
Error Handling
The server handles common errors gracefully:
- Invalid API Key: Clear error message with setup instructions
- File Not Found: Validation for image paths in image-to-video
- Generation Timeout: Configurable timeout with progress updates
- Model Errors: Fallback error handling with detailed messages
Development
Running Tests
# Install test dependencies
pip install pytest pytest-asyncio
# Run tests
pytest tests/
Code Formatting
# Format code
black mcp_veo3.py
# Check linting
flake8 mcp_veo3.py
# Type checking
mypy mcp_veo3.py
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
📚 Links
- PyPI: https://pypi.org/project/mcp-veo3/
- GitHub: https://github.com/dayongd1/mcp-veo3
- MCP Docs: https://modelcontextprotocol.io/
- Veo 3 API: https://ai.google.dev/gemini-api/docs/video
License
This project is licensed under the MIT License - see the LICENSE file for details.
Support
- Documentation: Google Veo 3 API Docs
- API Key: Get your Gemini API key
- Issues: Report bugs and feature requests in the GitHub issues
Changelog
v1.0.1
- 🔧 API Fix: Updated to match official Veo 3 API specification
- Removed unsupported parameters: aspect_ratio, negative_prompt, person_generation
- Simplified API calls: Now using only model and prompt parameters as per official docs
- Fixed video generation errors: Resolved "unexpected keyword argument" issues
- Updated documentation: Added notes about current API limitations
v1.0.0
- Initial release
- Support for Veo 3, Veo 3 Fast, and Veo 2 models
- Text-to-video and image-to-video generation
- FastMCP framework with progress tracking
- Comprehensive error handling and logging
- File management utilities
- uv/uvx support for easy installation
Built with FastMCP | Python 3.10+ | MIT License
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。