mcp-vibe-check

mcp-vibe-check

Custom version of vibecheck

Category
访问服务器

README

🧠 Vibe Check MCP v2.5.1

<p align="center"> <b>Based on research</b><br/> In our study agents calling Vibe Check improved success (27 → 54%) and halved harmful actions (83 → 42%). </p>

<p align="center"> <a href="https://www.researchgate.net/publication/394946231_Do_AI_Agents_Need_Mentors_Evaluating_Chain-Pattern_Interrupt_CPI_for_Oversight_and_Reliability?channel=doi&linkId=68ad6178ca495d76982ff192&showFulltext=true"> <img src="https://img.shields.io/badge/Research-CPI%20%28MURST%29-blue?style=flat-square" alt="CPI (MURST) Research"> </a> <a href="https://github.com/modelcontextprotocol/servers"><img src="https://img.shields.io/badge/Anthropic%20MCP-listed-111?labelColor=111&color=555&style=flat-square" alt="Anthropic MCP: listed"></a> <a href="https://registry.modelcontextprotocol.io/"><img src="https://img.shields.io/badge/MCP%20Registry-discoverable-555?labelColor=111&style=flat-square" alt="MCP Registry: discoverable"></a> <a href="https://github.com/PV-Bhat/vibe-check-mcp-server/actions/workflows/ci.yml"><img src="https://github.com/PV-Bhat/vibe-check-mcp-server/actions/workflows/ci.yml/badge.svg" alt="CI"></a> <a href="LICENSE"><img src="https://img.shields.io/badge/license-MIT-0b7285?style=flat-square" alt="MIT License"></a> </p>

<p align="center"> <sub>18k+ installs across MCP clients • research-backed oversight • streamable HTTP transport</sub> </p>

<img width="500" height="300" alt="vibecheckv2.5" src="https://github.com/user-attachments/assets/bcd06d7d-a184-43e9-8c43-22aca3074d32" />

Plug-and-play metacognitive oversight layer for autonomous AI agents – a research-backed MCP server keeping LLMs aligned, reflective and safe.

Recognition

  • Listed in Anthropic’s official Model Context Protocol repo 🔗
  • Discoverable in the official MCP Registry 🔗
  • 18k+ installs across public MCP directories/clients

Version Trust Score smithery badge Security 4.3★ on MSEEP PRs Welcome

Table of Contents


What is Vibe Check MCP?

Vibe Check MCP is a lightweight server implementing Anthropic's Model Context Protocol. It acts as an AI meta-mentor for your agents, interrupting pattern inertia with Chain-Pattern Interrupts (CPI) to prevent Reasoning Lock-In (RLI). Think of it as a rubber-duck debugger for LLMs – a quick sanity check before your agent goes down the wrong path.

Overview

Vibe Check MCP pairs a metacognitive signal layer with CPI so agents can pause when risk spikes. Vibe Check surfaces traits, uncertainty, and risk scores; CPI consumes those triggers and enforces an intervention policy before the agent resumes. See the CPI integration guide and the CPI repo at https://github.com/PV-Bhat/cpi for wiring details.

Architecture

Vibe Check runs alongside your agent workflow, emitting signals that downstream overseers like CPI or human reviewers can act on. The high-level component map lives in docs/architecture.md, while the CPI handoff diagram and example shim are captured in docs/integrations/cpi.md.

The Problem: Pattern Inertia & Reasoning Lock-In

Large language models can confidently follow flawed plans. Without an external nudge they may spiral into overengineering or misalignment. Vibe Check provides that nudge through short reflective pauses, improving reliability and safety.

Key Features

Feature Description Benefits
CPI Adaptive Interrupts Phase-aware prompts that challenge assumptions alignment, robustness
Multi-provider LLM Gemini, OpenAI and OpenRouter support flexibility
History Continuity Summarizes prior advice when sessionId is supplied context retention
Optional vibe_learn Log mistakes and fixes for future reflection self-improvement

What's New in v2.5.1

Session Constitution (per-session rules)

Use a lightweight “constitution” to enforce rules per sessionId that CPI will honor. Typical uses: “no external network calls,” “prefer unit tests before refactors,” “never write secrets to disk.”

API (tools):

  • update_constitution({ sessionId, rules }) → merges/sets rule set for the session
  • reset_constitution({ sessionId }) → clears session rules
  • check_constitution({ sessionId }) → returns effective rules for the session as a JSON string in text format for broad MCP client compatibility

Response Format Note: The check_constitution tool returns its data with type: 'text' containing a JSON string (rather than type: 'json') to ensure compatibility with the widest range of MCP clients. Clients will need to parse the text field to access the JSON data.

Quickstart & Installation

# Clone and install
git clone https://github.com/PV-Bhat/vibe-check-mcp-server.git
cd vibe-check-mcp-server
npm install
npm run build

This project targets Node 20+. If you see a TypeScript error about a duplicate require declaration when building with Node 20.19.3, ensure your dependencies are up to date (npm install) or use the Docker setup below which handles the build automatically.

Create a .env file with the API keys you plan to use:

# Gemini (default)
GEMINI_API_KEY=your_gemini_api_key
# Optional providers
OPENAI_API_KEY=your_openai_api_key
OPENROUTER_API_KEY=your_openrouter_api_key
# Optional overrides
DEFAULT_LLM_PROVIDER=gemini
DEFAULT_MODEL=gemini-2.5-pro

Start the server:

npm start

See docs/TESTING.md for instructions on how to run tests.

Docker

The repository includes a helper script for one-command setup. It builds the image, saves your GEMINI_API_KEY and configures the container to start automatically whenever you log in:

bash scripts/docker-setup.sh

This script:

  • Creates ~/vibe-check-mcp for persistent data
  • Builds the Docker image and sets up docker-compose.yml
  • Prompts for your API key and writes ~/vibe-check-mcp/.env
  • Installs a systemd service (Linux) or LaunchAgent (macOS) so the container starts at login
  • Generates vibe-check-tcp-wrapper.sh which proxies Cursor IDE to the server After running it, open Cursor IDE → SettingsMCP and add a new server of type Command pointing to:
~/vibe-check-mcp/vibe-check-tcp-wrapper.sh

See Automatic Docker Setup for full details. If you prefer to run the commands manually:

docker build -t vibe-check-mcp .
docker run -e GEMINI_API_KEY=your_gemini_api_key -p 3000:3000 vibe-check-mcp

Integrating with Claude Desktop

Add to claude_desktop_config.json:

"vibe-check": {
  "command": "node",
  "args": ["/path/to/vibe-check-mcp/build/index.js"],
  "env": { "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY" }
}

Research & Philosophy

CPI (Chain-Pattern Interrupt) is the research-backed oversight method behind Vibe Check. It injects brief, well-timed “pause points” at risk inflection moments to re-align the agent to the user’s true priority, preventing destructive cascades and reasoning lock-in (RLI). In pooled evaluation across 153 runs, CPI nearly doubles success (~27%→54%) and roughly halves harmful actions (~83%→42%). Optimal interrupt dosage is ~10–20% of steps. Vibe Check MCP implements CPI as an external mentor layer at test time.

Links:

  • 📄 CPI Paper (ResearchGate) — http://dx.doi.org/10.13140/RG.2.2.18237.93922
  • 📘 CPI Reference Implementation (GitHub): https://github.com/PV-Bhat/cpi
  • 📚 MURST Zenodo DOI (RSRC archival): https://doi.org/10.5281/zenodo.14851363

Usage Examples

import { vibe_check } from 'vibe-check-mcp';
const result = await vibe_check({
  goal: 'Write unit tests',
  plan: 'Use vitest for coverage',
  sessionId: 'demo1'
});
console.log(result.questions);
flowchart TD
  A[Agent Phase] --> B{Monitor Progress}
  B -- high risk --> C[CPI Interrupt]
  C --> D[Reflect & Adjust]
  B -- smooth --> E[Continue]

Adaptive Metacognitive Interrupts (CPI)

<details><summary>Advanced CPI Details</summary> The CPI architecture monitors planning, implementation and review phases. When uncertainty spikes, Vibe Check pauses execution, poses clarifying questions and resumes once the agent acknowledges the feedback. </details>

Agent Prompting Essentials

In your agent's system prompt, make it clear that vibe_check is a mandatory tool for reflection. Always pass the full user request and other relevant context. After correcting a mistake, you can optionally log it with vibe_learn to build a history for future analysis.

Example snippet:

As an autonomous agent you will:
1. Call vibe_check after planning and before major actions.
2. Provide the full user request and your current plan.
3. Optionally, record resolved issues with vibe_learn.

When to Use Each Tool

Tool Purpose
🛑 vibe_check Challenge assumptions and prevent tunnel vision
🔄 vibe_learn Capture mistakes, preferences, and successes
🧰 update_constitution Set/merge session rules the CPI layer will enforce
🧹 reset_constitution Clear rules for a session
🔎 check_constitution Inspect effective rules for a session (returns JSON as text for MCP compatibility)

Documentation

Security

This repository includes a CI-based security scan that runs on every pull request. It checks dependencies with npm audit and scans the source for risky patterns. See SECURITY.md for details and how to report issues.

Roadmap

  1. Benchmarks and latency profiling
  2. Adaptive tuning based on agent performance
  3. Multi-agent cooperation support
  4. Optional human-in-the-loop review

Contributing & Community

Contributions are welcome! See CONTRIBUTING.md.

FAQ

  • Does it increase latency? A single CPI call typically adds ~1 second depending on the provider.
  • Can I disable logging? Yes, vibe_learn is optional.

Find Vibe Check MCP on

Star History

Star History Chart

Credits & License

Vibe Check MCP is released under the MIT License. Built for reliable, enterprise-ready AI agents.

Author Credits & Links

Vibe Check MCP created by: Pruthvi Bhat, Intiative - https://murst.org/

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选