
MCP Vibe Coding Knowledge Graph
A comprehensive Model Context Protocol server that integrates Vibe Coding methodology with Knowledge Graph technology for AI-assisted software development using Kuzu embedded database.
README
MCP Vibe Coding Knowledge Graph
⚠️ ALPHA SOFTWARE - NOT TESTED IN PRODUCTION
This system is in early development phase and has not been thoroughly tested in production environments. Use at your own risk and always maintain proper backups of your code and data.
A comprehensive Model Context Protocol (MCP) server that integrates Vibe Coding methodology with Knowledge Graph technology for AI-assisted software development using Kuzu embedded database.
🚀 Features
🧠 Knowledge Graph Intelligence
- Kuzu Graph Database: High-performance embedded graph database with Cypher queries
- Intelligent Caching: Multi-layer caching system with automatic optimization
- Pattern Detection: Advanced design pattern recognition across multiple languages
- Technical Debt Analysis: Comprehensive debt detection and remediation tracking
- Context-Aware Generation: Code generation based on existing patterns and standards
🔍 Multi-Language Code Analysis
- JavaScript/TypeScript: Full AST analysis with framework detection
- C++/Arduino: Specialized embedded development support
- Go, Rust, Python, Java: Comprehensive language support
- Git Integration: Repository history analysis and collaboration metrics
- Performance Analysis: Memory usage, timing constraints, and optimization
🛡️ Enterprise Security & Performance
- Input Validation: Multi-layer security with injection prevention
- Performance Monitoring: Real-time metrics and optimization
- Backup & Recovery: Automated backup system with compression
- Health Monitoring: Comprehensive system health and alerting
- Scalable Architecture: Designed for enterprise-grade deployment
🔧 Arduino/Embedded Development
- Hardware Validation: Pin conflict detection and board compatibility
- Memory Optimization: RAM, Flash, and EEPROM usage analysis
- Interrupt Safety: ISR-safe code generation and validation
- Timing Analysis: Real-time constraint validation
- Board Support: Arduino Uno, Mega, Nano, ESP32
📋 Prerequisites
- Node.js 18+
- Kuzu Database (embedded - automatically installed)
🔧 Quick Start
1. Installation
# Clone the repository
git clone https://github.com/yourusername/mcp-vibe-coding-kg
cd mcp-vibe-coding-kg
# Install dependencies
npm install
# Run setup wizard
npm run setup
2. Initialize Your Codebase
# Analyze your codebase and build knowledge graph
npm run init /path/to/your/codebase
# Advanced options
npm run init /path/to/codebase --force --depth 15 --parallel 8
3. Configure Claude Desktop
Configuration file locations:
- macOS:
~/Library/Application Support/Claude/claude_desktop_config.json
- Windows:
%APPDATA%\Claude\claude_desktop_config.json
- Linux:
~/.config/Claude/claude_desktop_config.json
Add MCP server configuration:
{
"mcpServers": {
"vibe-coding-kg": {
"command": "node",
"args": ["index.js", "start"],
"cwd": "/path/to/mcp-vibe-coding-kg",
"env": {
"NODE_ENV": "production"
}
}
}
}
4. Start Using
# Start the MCP server
npm start
# Check system health
npm run health
# Create backup
npm run backup my-backup.tar.gz
🎯 Available MCP Tools
📊 Knowledge Graph Management
define_domain_ontology
- Define business entities, rules, and coding standardsget_kg_statistics
- Comprehensive knowledge graph statistics and healthupdate_kg_from_code
- Update graph with new patterns and decisions
🔍 Code Analysis & Context
analyze_codebase
- Comprehensive codebase analysis with Git integrationquery_context_for_task
- Find relevant patterns for development tasksextract_context_from_code
- Extract structured information from commentsdetect_technical_debt
- Multi-dimensional technical debt analysis
🛠️ Code Generation & Validation
generate_code_with_context
- Context-aware code generation with templatessuggest_refactoring
- Intelligent refactoring recommendationsvalidate_against_kg
- Multi-layer code validation against patterns and rules
🔧 Arduino/C++ Development
analyze_arduino_sketch
- Complete Arduino project analysisvalidate_hardware_config
- Pin conflicts and board compatibilityoptimize_for_arduino
- Memory and performance optimizationgenerate_interrupt_safe_code
- ISR-safe code patternsanalyze_timing_constraints
- Real-time timing analysis
⚡ Performance & Optimization
get_optimization_report
- Comprehensive performance analysisforce_optimization
- Trigger immediate system optimization
🏗️ System Architecture
KGsMCP/
├── src/
│ ├── handlers/ # MCP tool implementations
│ │ ├── validation.js # Multi-layer validation system
│ │ ├── codeGeneration.js # Template-based code generation
│ │ ├── context.js # Context extraction and querying
│ │ ├── knowledgeGraph.js # Graph management operations
│ │ ├── initialization.js # Codebase analysis engine
│ │ └── arduinoHandler.js # Arduino/C++ specialized tools
│ ├── analyzers/ # Code analysis engines
│ │ ├── codeAnalyzer.js # Multi-language AST analysis
│ │ ├── gitAnalyzer.js # Git history and collaboration
│ │ └── patternDetector.js # Design pattern recognition
│ ├── database/ # Kuzu database integration
│ │ ├── kuzuClient.js # Enhanced database client
│ │ ├── cypherQueryBuilder.js # Fluent query builder
│ │ ├── queryOptimizer.js # Performance optimization
│ │ └── transactionManager.js # ACID transactions
│ ├── validation/ # Security and validation
│ │ ├── MCPInputValidator.js # Schema-based validation
│ │ ├── ValidationMiddleware.js # Consistent validation
│ │ └── AdvancedValidators.js # Security threat detection
│ ├── optimization/ # Performance systems
│ │ ├── PerformanceMonitor.js # Real-time monitoring
│ │ ├── MemoryOptimizer.js # Memory management
│ │ └── CacheManager.js # Multi-layer caching
│ └── utils/ # Shared utilities
│ ├── backupManager.js # Backup and recovery
│ ├── config.js # Configuration management
│ └── logger.js # Structured logging
├── tests/ # Comprehensive test suite
│ ├── unit/ # Unit tests
│ ├── integration/ # Integration tests
│ ├── performance/ # Performance tests
│ └── security/ # Security tests
├── docs/ # Complete documentation
│ ├── API_REFERENCE.md # API documentation
│ ├── ARCHITECTURE.md # System architecture
│ ├── USER_GUIDE.md # User manual
│ └── DEVELOPER_GUIDE.md # Development guide
└── config/ # Configuration files
└── default.json # Default settings
🧪 Testing
# Run all tests
npm test
# Run specific test categories
npm run test:unit
npm run test:integration
npm run test:performance
npm run test:security
# Run with coverage
npm run test:coverage
# Continuous testing
npm run test:watch
📊 Database Schema
Node Types
- CodeEntity: Classes, functions, variables with complexity metrics
- Pattern: Design patterns (Singleton, Factory, Observer, etc.)
- Rule: Business rules and coding standards
- Standard: Naming conventions and formatting rules
- TechnicalDebt: Identified debt with severity and remediation
- HardwareComponent: Arduino pins, sensors, actuators
- TimingConstraint: Real-time timing requirements
Relationship Types
- IMPLEMENTS: Code implements design pattern
- VIOLATES: Code violates rule or standard
- DEPENDS_ON: Dependency relationships
- COUPLED_WITH: Code coupling analysis
- USES_HARDWARE: Hardware component usage
- HANDLES: Interrupt handling relationships
🚀 Usage Examples
Define Domain Architecture
Use the `define_domain_ontology` tool to establish your system architecture:
Entities:
- UserService (authentication, authorization)
- ProductCatalog (inventory, pricing)
- OrderProcessor (workflow, payments)
Relationships:
- UserService AUTHENTICATES OrderProcessor
- ProductCatalog PROVIDES OrderProcessor
Business Rules:
- "All API endpoints must have authentication"
- "Database connections must use connection pooling"
- "Error responses must include correlation IDs"
Coding Standards:
- Use TypeScript for type safety
- Follow SOLID principles
- Maximum function complexity: 10
Analyze Arduino Project
Use the `analyze_arduino_sketch` tool for embedded analysis:
Sketch path: "./arduino/sensor_hub/sensor_hub.ino"
Target board: "mega2560"
Include libraries: true
Returns comprehensive analysis:
- Memory usage: RAM 1.2KB/8KB, Flash 15KB/256KB
- Pin conflicts: None detected
- Interrupt usage: 2/6 available
- Timing violations: Loop takes 45ms (target: <50ms)
- Optimization suggestions: Use PROGMEM for strings
Generate Context-Aware Code
Use the `generate_code_with_context` tool:
Requirement: "Create API endpoint for user registration"
Patterns to apply: ["repository", "validation", "error-handling"]
Constraints: {"language": "typescript", "framework": "express"}
Generates:
- Repository pattern implementation
- Input validation with Joi schemas
- Structured error handling
- Comprehensive logging
- Unit test templates
🔧 Development
Environment Setup
# Install development dependencies
npm install
# Copy environment template
cp .env.example .env
# Edit configuration
nano .env
Development Commands
# Start in development mode with hot reload
npm run dev
# Run linting
npm run lint
# Fix linting issues
npm run lint:fix
# Type checking
npm run typecheck
# Build for production
npm run build
Environment Variables
# Database configuration
KUZU_DB_PATH=.kg-context/knowledge-graph.kuzu
KUZU_MAX_RETRIES=3
KUZU_QUERY_TIMEOUT=30000
# Logging configuration
LOG_LEVEL=info
LOG_ENABLED=true
LOG_MAX_FILES=10
# Performance configuration
ENABLE_CACHING=true
CACHE_TIMEOUT=300000
MAX_CACHE_SIZE=100
# Security configuration
ENABLE_RATE_LIMIT=true
MAX_REQUESTS_PER_MINUTE=100
🛠️ CLI Commands
# Server management
node index.js start [--config path] [--debug] [--verify]
node index.js health [--config path]
# Setup and initialization
node index.js setup [--force]
node index.js init <codebase> [--force] [--depth N] [--parallel N]
# Backup and recovery
node index.js backup <output> [--description text] [--validate]
node index.js restore <backup> [--force] [--incremental]
node index.js clean [--force] [--backup] [--temp-only]
🐛 Troubleshooting
Common Issues
Database Connection Issues:
# Check database directory
ls -la .kg-context/
# Verify permissions
chmod 755 .kg-context/
# Restart with debug logging
LOG_LEVEL=debug node index.js start
Memory Issues:
# Check memory usage
node index.js health
# Clean temporary files
node index.js clean --temp-only
# Force optimization
npm run optimize
Performance Issues:
# Get optimization report
# Use get_optimization_report tool in Claude
# Check cache statistics
# Use get_kg_statistics tool with includeDetails: true
# Force cache refresh
node index.js clean --temp-only
Debug Mode
# Enable comprehensive debugging
export LOG_LEVEL=debug
export NODE_ENV=development
node index.js start --debug
📈 Performance
- Response Time: <100ms for simple queries, <5s for complex analysis
- Memory Usage: ~50MB baseline, scales with codebase size
- Cache Hit Rate: >90% for repeated operations
- Concurrent Requests: Supports 100+ simultaneous tool calls
- Database Size: ~1MB per 10K lines of analyzed code
🤝 Contributing
- Fork the repository
- Create feature branch:
git checkout -b feature/amazing-feature
- Make changes with proper Vibe Coding comments
- Add comprehensive tests
- Commit:
git commit -m 'Add amazing feature'
- Push:
git push origin feature/amazing-feature
- Open Pull Request
Code Standards
- Follow Vibe Coding methodology with structured comments
- Include AGENT, CONTEXT, REASON, CHANGE, PREVENTION metadata
- Maintain >90% test coverage
- Use TypeScript for type safety
- Follow SOLID principles
📄 License
MIT License - see LICENSE file for details.
🙏 Acknowledgments
- Model Context Protocol: Foundation for AI-tool integration
- Kuzu Database: High-performance embedded graph database
- Babel Parser: JavaScript/TypeScript AST analysis
- Jest: Comprehensive testing framework
- Joi: Schema validation and sanitization
🎯 Ready for production • 🚀 Enterprise-grade • 🧠 AI-powered • 🔧 Developer-friendly
Built with ❤️ for the AI-assisted development community
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。