MCP Video Generation with Veo2

MCP Video Generation with Veo2

MCP server that exposes Google's Veo2 video generation capabilities, allowing clients to generate videos from text prompts or images.

Category
访问服务器

README

MCP Video Generation with Veo2

smithery badge

This project implements a Model Context Protocol (MCP) server that exposes Google's Veo2 video generation capabilities. It allows clients to generate videos from text prompts or images, and access the generated videos through MCP resources.

Features

  • Generate videos from text prompts
  • Generate videos from images
  • Access generated videos through MCP resources
  • Example video generation templates
  • Support for both stdio and SSE transports

Example Images

1dec9c71-07dc-4a6e-9e17-8da355d72ba1

Example Image to Video

Image to Video - from Grok generated puppy

Image to Video - from real cat

Prerequisites

  • Node.js 18 or higher
  • Google API key with access to Gemini API and Veo2 model (= You need to set up a credit card with your API key! -> Go to aistudio.google.com )

Installation

Installing in FLUJO

  1. Click Add Server
  2. Copy & Paste Github URL into FLUJO
  3. Click Parse, Clone, Install, Build and Save.

Installing via Smithery

To install mcp-video-generation-veo2 for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @mario-andreschak/mcp-veo2 --client claude

Manual Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/mcp-video-generation-veo2.git
    cd mcp-video-generation-veo2
    
  2. Install dependencies:

    npm install
    
  3. Create a .env file with your Google API key:

    cp .env.example .env
    # Edit .env and add your Google API key
    

    The .env file supports the following variables:

    • GOOGLE_API_KEY: Your Google API key (required)
    • PORT: Server port (default: 3000)
    • STORAGE_DIR: Directory for storing generated videos (default: ./generated-videos)
    • LOG_LEVEL: Logging level (default: fatal)
      • Available levels: verbose, debug, info, warn, error, fatal, none
      • For development, set to debug or info for more detailed logs
      • For production, keep as fatal to minimize console output
  4. Build the project:

    npm run build
    

Usage

Starting the Server

You can start the server with either stdio or SSE transport:

stdio Transport (Default)

npm start
# or
npm start stdio

SSE Transport

npm start sse

This will start the server on port 3000 (or the port specified in your .env file).

MCP Tools

The server exposes the following MCP tools:

generateVideoFromText

Generates a video from a text prompt.

Parameters:

  • prompt (string): The text prompt for video generation
  • config (object, optional): Configuration options
    • aspectRatio (string, optional): "16:9" or "9:16"
    • personGeneration (string, optional): "dont_allow" or "allow_adult"
    • numberOfVideos (number, optional): 1 or 2
    • durationSeconds (number, optional): Between 5 and 8
    • enhancePrompt (boolean, optional): Whether to enhance the prompt
    • negativePrompt (string, optional): Text describing what not to generate

Example:

{
  "prompt": "Panning wide shot of a serene forest with sunlight filtering through the trees, cinematic quality",
  "config": {
    "aspectRatio": "16:9",
    "personGeneration": "dont_allow",
    "durationSeconds": 8
  }
}

generateVideoFromImage

Generates a video from an image.

Parameters:

  • image (string): Base64-encoded image data
  • prompt (string, optional): Text prompt to guide the video generation
  • config (object, optional): Configuration options (same as above, but personGeneration only supports "dont_allow")

listGeneratedVideos

Lists all generated videos.

MCP Resources

The server exposes the following MCP resources:

videos://{id}

Access a generated video by its ID.

videos://templates

Access example video generation templates.

Development

Project Structure

  • src/: Source code
    • index.ts: Main entry point
    • server.ts: MCP server configuration
    • config.ts: Configuration handling
    • tools/: MCP tool implementations
    • resources/: MCP resource implementations
    • services/: External service integrations
    • utils/: Utility functions

Building

npm run build

Development Mode

npm run dev

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选