MCP Video Recognition Server

MCP Video Recognition Server

Provides tools for image, audio, and video recognition using Google's Gemini AI through the Model Context Protocol.

Category
访问服务器

README

MCP Video Recognition Server

An MCP (Model Context Protocol) server that provides tools for image, audio, and video recognition using Google's Gemini AI.

Features

  • Image Recognition: Analyze and describe images using Google Gemini AI
  • Audio Recognition: Analyze and transcribe audio using Google Gemini AI
  • Video Recognition: Analyze and describe videos using Google Gemini AI

Prerequisites

  • Node.js 18 or higher
  • Google Gemini API key

Installation

Manual Installation

  1. Clone the repository:

    git clone https://github.com/yourusername/mcp-video-recognition.git
    cd mcp-video-recognition
    
  2. Install dependencies:

    npm install
    
  3. Build the project:

    npm run build
    

Installing in FLUJO

  1. Click Add Server
  2. Copy & Paste Github URL into FLUJO
  3. Click Parse, Clone, Install, Build and Save.

Installing via Configuration Files

To integrate this MCP server with Cline or other MCP clients via configuration files:

  1. Open your Cline settings:

    • In VS Code, go to File -> Preferences -> Settings
    • Search for "Cline MCP Settings"
    • Click "Edit in settings.json"
  2. Add the server configuration to the mcpServers object:

    {
      "mcpServers": {
        "video-recognition": {
          "command": "node",
          "args": [
            "/path/to/mcp-video-recognition/dist/index.js"
          ],
          "disabled": false,
          "autoApprove": []
        }
      }
    }
    
  3. Replace /path/to/mcp-video-recognition/dist/index.js with the actual path to the index.js file in your project directory. Use forward slashes (/) or double backslashes (\\) for the path on Windows.

  4. Save the settings file. Cline should automatically connect to the server.

Configuration

The server is configured using environment variables:

  • GOOGLE_API_KEY (required): Your Google Gemini API key
  • TRANSPORT_TYPE: Transport type to use (stdio or sse, defaults to stdio)
  • PORT: Port number for SSE transport (defaults to 3000)
  • LOG_LEVEL: Logging level (verbose, debug, info, warn, error, defaults to info)

Usage

Starting the Server

With stdio Transport (Default)

GOOGLE_API_KEY=your_api_key npm start

With SSE Transport

GOOGLE_API_KEY=your_api_key TRANSPORT_TYPE=sse PORT=3000 npm start

Using the Tools

The server provides three tools that can be called by MCP clients:

Image Recognition

{
  "name": "image_recognition",
  "arguments": {
    "filepath": "/path/to/image.jpg",
    "prompt": "Describe this image in detail",
    "modelname": "gemini-2.0-flash"
  }
}

Audio Recognition

{
  "name": "audio_recognition",
  "arguments": {
    "filepath": "/path/to/audio.mp3",
    "prompt": "Transcribe this audio",
    "modelname": "gemini-2.0-flash"
  }
}

Video Recognition

{
  "name": "video_recognition",
  "arguments": {
    "filepath": "/path/to/video.mp4",
    "prompt": "Describe what happens in this video",
    "modelname": "gemini-2.0-flash"
  }
}

Tool Parameters

All tools accept the following parameters:

  • filepath (required): Path to the media file to analyze
  • prompt (optional): Custom prompt for the recognition (defaults to "Describe this content")
  • modelname (optional): Gemini model to use for recognition (defaults to "gemini-2.0-flash")

Development

Running in Development Mode

GOOGLE_API_KEY=your_api_key npm run dev

Project Structure

  • src/index.ts: Entry point
  • src/server.ts: MCP server implementation
  • src/tools/: Tool implementations
  • src/services/: Service implementations (Gemini API)
  • src/types/: Type definitions
  • src/utils/: Utility functions

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选