MCP Web Fetch Server

MCP Web Fetch Server

Enables fetching content from any URL with support for different HTTP methods, custom headers, and request bodies. Designed to work with ChatGPT and other AI assistants for web scraping and API interactions.

Category
访问服务器

README

MCP Web Fetch Server

An MCP (Model Context Protocol) server that provides web fetching capabilities over HTTP/SSE. This server is designed to work with ChatGPT and other AI assistants that support MCP over HTTP.

Features

  • Fetch content from any URL
  • Support for different HTTP methods (GET, POST, PUT, DELETE, PATCH)
  • Custom headers support
  • Adaptive chunking for large responses to avoid MCP payload limits
  • Request body support for POST/PUT/PATCH
  • Dockerized for easy deployment
  • External access via port 8080

Quick Start

Using Docker Compose (Recommended)

docker-compose up -d

Using Docker

# Build the image
docker build -t mcp-web-fetch .

# Run the container
docker run -d -p 8080:8080 --name mcp-web-fetch mcp-web-fetch

Local Development

# Install dependencies
npm install

# Start the server
npm start

Endpoints

ChatGPT Actions Endpoints

  • GET /openapi.json - OpenAPI 3.1 schema for ChatGPT Actions
  • POST /fetch - Fetch content from a URL (simplified endpoint for Actions)

MCP Protocol Endpoints

  • GET /.well-known/mcp.json - MCP manifest
  • GET /tools/list - List available tools
  • POST /tools/call - Execute a tool

Legacy SSE Endpoints

  • GET /sse - SSE endpoint for MCP communication
  • POST /messages - Message endpoint for MCP

Utility Endpoints

  • GET / - Server information
  • GET /health - Health check endpoint

Using with ChatGPT

Option 1: ChatGPT Actions (Recommended)

To use this server with ChatGPT Actions:

  1. Deploy the server and ensure it's accessible externally on port 8080
  2. In ChatGPT, go to your GPT settings and create a new Action
  3. Import the OpenAPI schema:
    • Click "Import from URL"
    • Enter: https://your-host:8080/openapi.json
  4. The fetchUrl action will now be available to ChatGPT

Option 2: MCP Protocol

To use this server with MCP-compatible clients:

  1. Deploy the server and ensure it's accessible externally on port 8080
  2. Configure your MCP client:
    • Server URL: https://your-host:8080
    • The server will be auto-discovered via the /.well-known/mcp.json manifest

Available Tools

fetch_url

Fetches content from a URL and returns the response.

Parameters:

  • url (required): The URL to fetch
  • method (optional): HTTP method (GET, POST, PUT, DELETE, PATCH). Default: GET
  • headers (optional): Object containing HTTP headers
  • body (optional): Request body for POST/PUT/PATCH requests

Example:

{
  "url": "https://api.example.com/data",
  "method": "GET",
  "headers": {
    "Authorization": "Bearer token123"
  }
}

When the fetched body exceeds the configured chunk size, MCP clients receive metadata plus additional chunk N/M text messages containing the body segments. The /fetch HTTP endpoint mirrors this behavior by returning bodyChunks, bodyChunkSize, and bodyChunkCount alongside the aggregate bodyLength.

Configuration

The server can be configured using environment variables:

  • PORT: Port to run the server on (default: 8080)
  • SERVER_URL: Public HTTPS URL for your server (used in OpenAPI schema). Required for ChatGPT Actions. Example: https://mcp.36technology.com
  • MCP_BODY_CHUNK_SIZE: Maximum number of characters per body chunk when returning large payloads (default: 60000)

Setting Environment Variables

For Docker deployment, create a .env file:

cp .env.example .env
# Edit .env and set SERVER_URL to your public HTTPS URL

Or set it directly in docker-compose:

SERVER_URL=https://your-domain.com docker-compose up -d

Health Check

Check if the server is running:

curl http://localhost:8080/health

Testing

Test ChatGPT Actions Endpoints

Get the OpenAPI schema:

curl http://localhost:8080/openapi.json

Test the fetch endpoint:

curl -X POST http://localhost:8080/fetch \
  -H "Content-Type: application/json" \
  -d '{
    "url": "https://api.github.com/zen"
  }'

Test MCP Protocol Endpoints

Test the MCP manifest:

curl http://localhost:8080/.well-known/mcp.json

List available tools:

curl http://localhost:8080/tools/list

Call the fetch_url tool:

curl -X POST http://localhost:8080/tools/call \
  -H "Content-Type: application/json" \
  -d '{
    "name": "fetch_url",
    "arguments": {
      "url": "https://api.github.com/zen"
    }
  }'

Security Considerations

  • This server can fetch any URL, so use appropriate network restrictions
  • Consider adding authentication if exposing publicly
  • Be mindful of rate limiting on external services
  • Use HTTPS in production environments

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选