MCP Web Fetch Server
Enables fetching content from any URL with support for different HTTP methods, custom headers, and request bodies. Designed to work with ChatGPT and other AI assistants for web scraping and API interactions.
README
MCP Web Fetch Server
An MCP (Model Context Protocol) server that provides web fetching capabilities over HTTP/SSE. This server is designed to work with ChatGPT and other AI assistants that support MCP over HTTP.
Features
- Fetch content from any URL
- Support for different HTTP methods (GET, POST, PUT, DELETE, PATCH)
- Custom headers support
- Adaptive chunking for large responses to avoid MCP payload limits
- Request body support for POST/PUT/PATCH
- Dockerized for easy deployment
- External access via port 8080
Quick Start
Using Docker Compose (Recommended)
docker-compose up -d
Using Docker
# Build the image
docker build -t mcp-web-fetch .
# Run the container
docker run -d -p 8080:8080 --name mcp-web-fetch mcp-web-fetch
Local Development
# Install dependencies
npm install
# Start the server
npm start
Endpoints
ChatGPT Actions Endpoints
GET /openapi.json- OpenAPI 3.1 schema for ChatGPT ActionsPOST /fetch- Fetch content from a URL (simplified endpoint for Actions)
MCP Protocol Endpoints
GET /.well-known/mcp.json- MCP manifestGET /tools/list- List available toolsPOST /tools/call- Execute a tool
Legacy SSE Endpoints
GET /sse- SSE endpoint for MCP communicationPOST /messages- Message endpoint for MCP
Utility Endpoints
GET /- Server informationGET /health- Health check endpoint
Using with ChatGPT
Option 1: ChatGPT Actions (Recommended)
To use this server with ChatGPT Actions:
- Deploy the server and ensure it's accessible externally on port 8080
- In ChatGPT, go to your GPT settings and create a new Action
- Import the OpenAPI schema:
- Click "Import from URL"
- Enter:
https://your-host:8080/openapi.json
- The
fetchUrlaction will now be available to ChatGPT
Option 2: MCP Protocol
To use this server with MCP-compatible clients:
- Deploy the server and ensure it's accessible externally on port 8080
- Configure your MCP client:
- Server URL:
https://your-host:8080 - The server will be auto-discovered via the
/.well-known/mcp.jsonmanifest
- Server URL:
Available Tools
fetch_url
Fetches content from a URL and returns the response.
Parameters:
url(required): The URL to fetchmethod(optional): HTTP method (GET, POST, PUT, DELETE, PATCH). Default: GETheaders(optional): Object containing HTTP headersbody(optional): Request body for POST/PUT/PATCH requests
Example:
{
"url": "https://api.example.com/data",
"method": "GET",
"headers": {
"Authorization": "Bearer token123"
}
}
When the fetched body exceeds the configured chunk size, MCP clients receive metadata plus additional chunk N/M text messages containing the body segments. The /fetch HTTP endpoint mirrors this behavior by returning bodyChunks, bodyChunkSize, and bodyChunkCount alongside the aggregate bodyLength.
Configuration
The server can be configured using environment variables:
PORT: Port to run the server on (default: 8080)SERVER_URL: Public HTTPS URL for your server (used in OpenAPI schema). Required for ChatGPT Actions. Example:https://mcp.36technology.comMCP_BODY_CHUNK_SIZE: Maximum number of characters per body chunk when returning large payloads (default: 60000)
Setting Environment Variables
For Docker deployment, create a .env file:
cp .env.example .env
# Edit .env and set SERVER_URL to your public HTTPS URL
Or set it directly in docker-compose:
SERVER_URL=https://your-domain.com docker-compose up -d
Health Check
Check if the server is running:
curl http://localhost:8080/health
Testing
Test ChatGPT Actions Endpoints
Get the OpenAPI schema:
curl http://localhost:8080/openapi.json
Test the fetch endpoint:
curl -X POST http://localhost:8080/fetch \
-H "Content-Type: application/json" \
-d '{
"url": "https://api.github.com/zen"
}'
Test MCP Protocol Endpoints
Test the MCP manifest:
curl http://localhost:8080/.well-known/mcp.json
List available tools:
curl http://localhost:8080/tools/list
Call the fetch_url tool:
curl -X POST http://localhost:8080/tools/call \
-H "Content-Type: application/json" \
-d '{
"name": "fetch_url",
"arguments": {
"url": "https://api.github.com/zen"
}
}'
Security Considerations
- This server can fetch any URL, so use appropriate network restrictions
- Consider adding authentication if exposing publicly
- Be mindful of rate limiting on external services
- Use HTTPS in production environments
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。