MCP Web Research Agent

MCP Web Research Agent

Enables automated web research and intelligence gathering through recursive web crawling, multi-engine search integration, and persistent SQLite storage with support for keyword filtering and multiple export formats.

Category
访问服务器

README

MCP Web Research Agent

A powerful MCP (Model Context Protocol) tool for automated web research, scraping, and intelligence gathering.

License: MIT Python 3.8+ MCP Protocol

A sophisticated web research automation tool that converts your existing scraper into an MCP-compatible agent for enhanced AI workflows. Perfect for competitive intelligence, market research, and automated data collection.

🚀 Features

  • 🔍 Intelligent Scraping: Recursive web crawling with configurable depth
  • 🔎 Search Integration: Multi-engine search with result processing
  • 💾 Database Storage: Persistent SQLite storage with advanced querying
  • 📊 Multiple Export Formats: JSON, Markdown, and CSV exports
  • 🤖 MCP Integration: Seamless integration with AI assistants
  • ⚡ Async Ready: Built for concurrent operations
  • 🔧 Configurable: Adjustable settings for any use case

🛠️ Installation

Prerequisites

  • Python 3.8+
  • MCP-compatible client (Claude Desktop, etc.)

Quick Install

# Clone the repository
git clone https://github.com/yourusername/mcp-web-research-agent.git
cd mcp-web-research-agent

# Install dependencies
pip install -e .

MCP Client Configuration

Add to your MCP client configuration:

{
  "mcpServers": {
    "web-research-agent": {
      "command": "python",
      "args": ["/path/to/mcp-web-research-agent/server.py"]
    }
  }
}

📖 Usage

Available Tools

scrape_url

Scrape a single URL for specific keywords

result = await scrape_url(
    url="https://example.com",
    keywords=["python", "automation", "scraping"],
    extract_links=False,
    max_depth=1
)

search_and_scrape

Search the web and automatically scrape results

result = await search_and_scrape(
    query="web scraping best practices",
    keywords=["python", "beautifulsoup", "requests"],
    search_engine_url="https://searx.gophernuttz.us/search/",
    max_results=10
)

get_scraping_results

Query the database for previous scraping results

result = await get_scraping_results(
    keyword_filter="python",
    limit=50
)

export_results

Export results to various formats

result = await export_results(
    format="markdown",
    keyword_filter="python",
    output_path="/path/to/output.md"
)

get_scraping_stats

Get current statistics and status

result = await get_scraping_stats()

🗃️ Database Schema

The agent uses SQLite with the following structure:

-- URLs table
CREATE TABLE urls (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    url TEXT UNIQUE NOT NULL,
    title TEXT,
    content TEXT,
    timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
);

-- Keywords table  
CREATE TABLE keywords (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    keyword TEXT UNIQUE NOT NULL
);

-- URL-Keyword relationships
CREATE TABLE url_keywords (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    url_id INTEGER,
    keyword_id INTEGER,
    matches INTEGER DEFAULT 1,
    context TEXT,
    FOREIGN KEY (url_id) REFERENCES urls (id),
    FOREIGN KEY (keyword_id) REFERENCES keywords (id),
    UNIQUE(url_id, keyword_id)
);

🔧 Configuration

Default Settings

  • Max Depth: 3 levels of recursive crawling
  • Request Delay: 1 second between requests
  • User Agent: Modern Chrome browser simulation
  • Database: scraper_results.db (auto-created)

Customization

Modify settings in the MCPWebScraper constructor:

scraper = MCPWebScraper(
    db_manager=db_manager,
    max_depth=5,      # Increase crawl depth
    delay=0.5         # Faster requests
)

🧪 Development

Running Tests

python test_mcp_scraper.py

Example Usage

python example_usage.py

Project Structure

mcp-web-research-agent/
├── server.py              # MCP server implementation
├── scraper.py             # Core scraping logic
├── database.py            # Database management
├── requirements.txt       # Python dependencies
├── pyproject.toml         # Package configuration
├── test_mcp_scraper.py    # Unit tests
├── example_usage.py       # Usage examples
└── README.md              # This file

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add some amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

  • Built on the Model Context Protocol
  • Inspired by modern web scraping best practices
  • Thanks to the open-source community for amazing tools

Built with ❤️ for the MCP ecosystem

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选