MCP Web Research Agent
Enables automated web research and intelligence gathering through recursive web crawling, multi-engine search integration, and persistent SQLite storage with support for keyword filtering and multiple export formats.
README
MCP Web Research Agent
A powerful MCP (Model Context Protocol) tool for automated web research, scraping, and intelligence gathering.
A sophisticated web research automation tool that converts your existing scraper into an MCP-compatible agent for enhanced AI workflows. Perfect for competitive intelligence, market research, and automated data collection.
🚀 Features
- 🔍 Intelligent Scraping: Recursive web crawling with configurable depth
- 🔎 Search Integration: Multi-engine search with result processing
- 💾 Database Storage: Persistent SQLite storage with advanced querying
- 📊 Multiple Export Formats: JSON, Markdown, and CSV exports
- 🤖 MCP Integration: Seamless integration with AI assistants
- ⚡ Async Ready: Built for concurrent operations
- 🔧 Configurable: Adjustable settings for any use case
🛠️ Installation
Prerequisites
- Python 3.8+
- MCP-compatible client (Claude Desktop, etc.)
Quick Install
# Clone the repository
git clone https://github.com/yourusername/mcp-web-research-agent.git
cd mcp-web-research-agent
# Install dependencies
pip install -e .
MCP Client Configuration
Add to your MCP client configuration:
{
"mcpServers": {
"web-research-agent": {
"command": "python",
"args": ["/path/to/mcp-web-research-agent/server.py"]
}
}
}
📖 Usage
Available Tools
scrape_url
Scrape a single URL for specific keywords
result = await scrape_url(
url="https://example.com",
keywords=["python", "automation", "scraping"],
extract_links=False,
max_depth=1
)
search_and_scrape
Search the web and automatically scrape results
result = await search_and_scrape(
query="web scraping best practices",
keywords=["python", "beautifulsoup", "requests"],
search_engine_url="https://searx.gophernuttz.us/search/",
max_results=10
)
get_scraping_results
Query the database for previous scraping results
result = await get_scraping_results(
keyword_filter="python",
limit=50
)
export_results
Export results to various formats
result = await export_results(
format="markdown",
keyword_filter="python",
output_path="/path/to/output.md"
)
get_scraping_stats
Get current statistics and status
result = await get_scraping_stats()
🗃️ Database Schema
The agent uses SQLite with the following structure:
-- URLs table
CREATE TABLE urls (
id INTEGER PRIMARY KEY AUTOINCREMENT,
url TEXT UNIQUE NOT NULL,
title TEXT,
content TEXT,
timestamp DATETIME DEFAULT CURRENT_TIMESTAMP
);
-- Keywords table
CREATE TABLE keywords (
id INTEGER PRIMARY KEY AUTOINCREMENT,
keyword TEXT UNIQUE NOT NULL
);
-- URL-Keyword relationships
CREATE TABLE url_keywords (
id INTEGER PRIMARY KEY AUTOINCREMENT,
url_id INTEGER,
keyword_id INTEGER,
matches INTEGER DEFAULT 1,
context TEXT,
FOREIGN KEY (url_id) REFERENCES urls (id),
FOREIGN KEY (keyword_id) REFERENCES keywords (id),
UNIQUE(url_id, keyword_id)
);
🔧 Configuration
Default Settings
- Max Depth: 3 levels of recursive crawling
- Request Delay: 1 second between requests
- User Agent: Modern Chrome browser simulation
- Database:
scraper_results.db(auto-created)
Customization
Modify settings in the MCPWebScraper constructor:
scraper = MCPWebScraper(
db_manager=db_manager,
max_depth=5, # Increase crawl depth
delay=0.5 # Faster requests
)
🧪 Development
Running Tests
python test_mcp_scraper.py
Example Usage
python example_usage.py
Project Structure
mcp-web-research-agent/
├── server.py # MCP server implementation
├── scraper.py # Core scraping logic
├── database.py # Database management
├── requirements.txt # Python dependencies
├── pyproject.toml # Package configuration
├── test_mcp_scraper.py # Unit tests
├── example_usage.py # Usage examples
└── README.md # This file
🤝 Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add some amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Built on the Model Context Protocol
- Inspired by modern web scraping best practices
- Thanks to the open-source community for amazing tools
Built with ❤️ for the MCP ecosystem
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。