
mcp4mcp
A Meta MCP Server that provides persistent memory and intelligent guidance for MCP development projects.
README
mcp4mcp - Meta MCP Server
A Meta MCP Server that provides persistent memory and intelligent guidance for MCP development projects.
🎯 Overview
mcp4mcp is a specialized MCP server designed to help developers build better MCP projects. It provides:
- Persistent Project Memory: Track tools, their status, and development progress across sessions
- AI-Powered Intelligence: Get suggestions, detect duplicates, and avoid conflicts
- Development Session Tracking: Monitor your development activities and progress
- Code Analysis: Automatic discovery and analysis of MCP tools in your codebase
- Similarity Detection: Find similar tools to avoid duplication and improve consistency
🚀 Quick Start
Installation
# Install dependencies
pip install -e .
# Start the server
python server.py
# Or use the main entry point
python main.py server
Basic Usage
# Run the demo to see all features
python main.py demo
# Run tests
python main.py test
🛠️ Features
Core Tools
The server provides 11 MCP tools organized into three categories:
State Management
get_project_state_tool
- Load current project state and toolsupdate_project_state_tool
- Update project information and add/modify toolsscan_project_files_tool
- Automatically scan files for MCP tools
Intelligence & Analysis
check_before_build_tool
- Check for conflicts before building new toolssuggest_next_action_tool
- Get AI-powered development suggestionsanalyze_tool_similarity_tool
- Analyze tools for similarity and duplication
Development Tracking
track_development_session_tool
- Log development activities and progressend_development_session_tool
- End a development session with summaryget_development_sessions_tool
- Get recent development sessionsget_session_analytics_tool
- Get development analytics and insightsupdate_tool_status_tool
- Update individual tool status
📋 Usage Examples
1. Project Management
# Start a new development session
await track_development_session(
"Started working on file tools",
"my_project",
"file_reader",
"Implementing CSV file reading capability"
)
# Update project with new tools
await update_project_state(
"my_project",
"File processing MCP server",
[
{
"name": "read_csv",
"description": "Read CSV files",
"status": "planned"
},
{
"name": "write_csv",
"description": "Write CSV files",
"status": "planned"
}
]
)
2. Conflict Detection
# Check before building a new tool
result = await check_before_build(
"csv_processor",
"Process CSV files by reading and writing",
"my_project"
)
# Result will show potential conflicts with existing tools
print(f"Conflicts found: {len(result['conflicts'])}")
print(f"Recommendations: {result['recommendations']}")
3. AI-Powered Suggestions
# Get intelligent suggestions
suggestions = await suggest_next_action(
"my_project",
"I've implemented file reading, what should I do next?"
)
print("AI Suggestions:")
for suggestion in suggestions['suggestions']:
print(f"- {suggestion}")
4. Code Scanning
# Automatically discover tools in your codebase
scan_result = await scan_project_files("my_project", "./src")
print(f"Found {scan_result['tools_found']} tools:")
for tool in scan_result['tools']:
print(f"- {tool['name']}: {tool['description']}")
🏗️ Architecture
Project Structure
mcp4mcp/
├── server.py # FastMCP server entry point
├── mcp4mcp/
│ ├── models.py # Pydantic data models
│ ├── storage.py # SQLite storage backend
│ ├── tools/ # MCP tool implementations
│ │ ├── state_management.py
│ │ ├── intelligence.py
│ │ └── tracking.py
│ ├── analyzers/ # Code analysis modules
│ │ ├── code_scanner.py
│ │ └── similarity.py
│ └── utils/ # Utility functions
├── tests/ # Comprehensive test suite
└── examples/ # Usage examples and demos
Data Models
ProjectState
class ProjectState(BaseModel):
name: str
description: str
tools: Dict[str, Tool]
sessions: List[DevelopmentSession]
analysis: Optional[ProjectAnalysis]
created_at: datetime
updated_at: datetime
Tool
class Tool(BaseModel):
name: str
description: str
status: ToolStatus # PLANNED, IN_PROGRESS, IMPLEMENTED, TESTED
file_path: Optional[str]
function_name: Optional[str]
parameters: List[Dict[str, Any]]
return_type: Optional[str]
similarity_scores: Dict[str, float]
💾 Storage
All project data is stored in SQLite at ~/.mcp4mcp/projects.db
with the following tables:
- projects - Project metadata and state
- tools - Individual tool definitions and status
- sessions - Development session tracking
- session_actions - Detailed session activities
🧪 Testing
Comprehensive test suite covering:
# Run all tests
python -m pytest tests/ -v
# Run specific test categories
python -m pytest tests/test_models.py -v # Data models
python -m pytest tests/test_storage.py -v # Storage backend
python -m pytest tests/test_tools.py -v # Tool functionality
python -m pytest tests/test_server.py -v # Server integration
📚 Examples
Example Project
The examples/example_project/
directory contains a sample MCP server with:
- File manipulation tools (read, write, list)
- Mathematical calculation tools (calculator, sqrt, power, factorial)
- Proper FastMCP integration
Demo Script
Run the comprehensive demo:
python examples/demo_usage.py
This demonstrates:
- Project creation and management
- Tool scanning and analysis
- Development session tracking
- AI-powered suggestions
- Conflict detection
🔧 Configuration
Environment Variables
MCP4MCP_DB_PATH
- Custom database path (default:~/.mcp4mcp/projects.db
)MCP4MCP_LOG_LEVEL
- Logging level (default:INFO
)
FastMCP Integration
from fastmcp import FastMCP
from mcp4mcp.tools.state_management import register_state_tools
from mcp4mcp.tools.intelligence import register_intelligence_tools
from mcp4mcp.tools.tracking import register_tracking_tools
mcp = FastMCP("your-mcp-server")
# Register mcp4mcp tools
register_state_tools(mcp)
register_intelligence_tools(mcp)
register_tracking_tools(mcp)
# Register your own tools
@mcp.tool()
def your_tool():
return "Hello from your tool!"
mcp.run()
🚀 Development
Adding New Tools
- Create tool functions in appropriate module (
mcp4mcp/tools/
) - Add tests in
tests/test_tools.py
- Register tools in
server.py
- Update documentation
Contributing
- Fork the repository
- Create a feature branch
- Add tests for new functionality
- Ensure all tests pass
- Submit a pull request
📄 License
This project is licensed under the MIT License.
🤝 Support
- Issues: Report bugs and request features on GitHub
- Documentation: Full API documentation in the code
- Examples: See
examples/
directory for usage patterns
mcp4mcp - Making MCP development smarter, one tool at a time! 🚀
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。