MCP4Meme

MCP4Meme

A FastMCP server that provides meme token analysis tools for tracking bonding curve progress, trading data, market trends, and discovering trending tokens in the Four.meme ecosystem.

Category
访问服务器

README

MCP4Meme 🚀

FastMCP demo server for meme-related functionality.

Features

Bonding Curve & Token Analysis

  • Bonding curve progress: Track token graduation status (0-100%)
  • Migration tracking: Monitor token migration from bonding curve to DEX
  • Token lifecycle: Identify tokens approaching "graduation" threshold

Trading & Market Data

  • Latest trades: Real-time trading activity and transaction history
  • Price data: Current USD and BNB prices with market cap
  • Volume analytics: Trading volume statistics with OHLCV data
  • Market trends: Price movements and trading patterns

Trader & Liquidity Analysis

  • Top traders: Identify high-volume traders and "smart money"
  • Liquidity events: Track liquidity additions/removals
  • Trading behavior: Analyze trader patterns and P&L

Discovery & Search

  • Progress search: Find tokens by bonding curve completion (e.g., 90-95%)
  • Trending tokens: Discover hot tokens by volume, trades, or progress
  • Market scanning: Search across Four.meme ecosystem

Demo Tools (Legacy)

  • Calculator tools: add(), multiply()
  • Greeting tool: get_greeting(name)

Quick Start

Local Development

# Install dependencies
uv pip install -r requirements.txt

# Configure API key (optional - uses mock data without key)
cp .env.example .env
# Edit .env and add your Bitquery API key

# Run server
python mcp_server.py

# Test with FastMCP inspector
fastmcp dev mcp_server.py

Docker Usage

# Build image
docker build -t mcp4meme .

# STDIO mode (for MCP clients)
docker run -it mcp4meme

# With API key
docker run -it -e BITQUERY_API_KEY=your_key_here mcp4meme

# HTTP mode (for web access)
docker run -p 8000:8000 mcp4meme python mcp_server.py --http

# Using docker-compose
docker-compose up mcp4meme
docker-compose --profile http up mcp4meme-http

DeepChat Integration

With API key (real data):

{
  "mcpServers": {
    "mcp4meme": {
      "command": "docker",
      "args": ["run", "-i", "mcp4meme"],
      "env": {
        "BITQUERY_API_KEY": "your_bitquery_api_key_here"
      }
    }
  }
}

Without API key (mock data):

{
  "mcpServers": {
    "mcp4meme": {
      "command": "docker",
      "args": ["run", "-i", "mcp4meme"]
    }
  }
}

Available Tools

Bonding Curve & Token Analysis

  • get_bonding_curve_progress(token_address: str) - Get token bonding curve progress percentage
  • get_token_migration_status(token_address: str) - Check token migration status from bonding curve to DEX

Trading & Market Data

  • get_latest_trades(token_address: str, limit: int = 10) - Get latest trading records
  • get_token_price_usd(token_address: str) - Get current USD price for a token
  • get_trading_volume(token_address: str, timeframe: str = "24h") - Get trading volume statistics

Trader & Liquidity Analysis

  • get_top_traders(token_address: str, limit: int = 10, timeframe: str = "24h") - Get top traders by volume
  • get_liquidity_events(token_address: str, limit: int = 10) - Get liquidity-related events

Discovery & Search

  • search_tokens_by_progress(min_progress: float = 90.0, max_progress: float = 95.0, limit: int = 20) - Search tokens by bonding curve progress
  • get_trending_tokens(timeframe: str = "24h", sort_by: str = "volume", limit: int = 10) - Get trending tokens

Demo Tools (Legacy)

  • add(a: int, b: int) -> int - Add two numbers
  • multiply(a: int, b: int) -> int - Multiply two numbers
  • get_greeting(name: str) -> str - Get a personalized greeting

Resources

  • config://mcp4meme - Server configuration and features
  • config://fourmeme-proxy - Four.meme proxy contract configuration

API Configuration

The server uses the Bitquery API to fetch blockchain data. To use real data:

  1. Get a free API key from Bitquery.io
  2. Copy .env.example to .env
  3. Add your API key: BITQUERY_API_KEY=your_key_here

Without an API key, the server returns mock data for testing.

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选