MCP4Meme
A FastMCP server that provides meme token analysis tools for tracking bonding curve progress, trading data, market trends, and discovering trending tokens in the Four.meme ecosystem.
README
MCP4Meme 🚀
FastMCP demo server for meme-related functionality.
Features
Bonding Curve & Token Analysis
- Bonding curve progress: Track token graduation status (0-100%)
- Migration tracking: Monitor token migration from bonding curve to DEX
- Token lifecycle: Identify tokens approaching "graduation" threshold
Trading & Market Data
- Latest trades: Real-time trading activity and transaction history
- Price data: Current USD and BNB prices with market cap
- Volume analytics: Trading volume statistics with OHLCV data
- Market trends: Price movements and trading patterns
Trader & Liquidity Analysis
- Top traders: Identify high-volume traders and "smart money"
- Liquidity events: Track liquidity additions/removals
- Trading behavior: Analyze trader patterns and P&L
Discovery & Search
- Progress search: Find tokens by bonding curve completion (e.g., 90-95%)
- Trending tokens: Discover hot tokens by volume, trades, or progress
- Market scanning: Search across Four.meme ecosystem
Demo Tools (Legacy)
- Calculator tools:
add(),multiply() - Greeting tool:
get_greeting(name)
Quick Start
Local Development
# Install dependencies
uv pip install -r requirements.txt
# Configure API key (optional - uses mock data without key)
cp .env.example .env
# Edit .env and add your Bitquery API key
# Run server
python mcp_server.py
# Test with FastMCP inspector
fastmcp dev mcp_server.py
Docker Usage
# Build image
docker build -t mcp4meme .
# STDIO mode (for MCP clients)
docker run -it mcp4meme
# With API key
docker run -it -e BITQUERY_API_KEY=your_key_here mcp4meme
# HTTP mode (for web access)
docker run -p 8000:8000 mcp4meme python mcp_server.py --http
# Using docker-compose
docker-compose up mcp4meme
docker-compose --profile http up mcp4meme-http
DeepChat Integration
With API key (real data):
{
"mcpServers": {
"mcp4meme": {
"command": "docker",
"args": ["run", "-i", "mcp4meme"],
"env": {
"BITQUERY_API_KEY": "your_bitquery_api_key_here"
}
}
}
}
Without API key (mock data):
{
"mcpServers": {
"mcp4meme": {
"command": "docker",
"args": ["run", "-i", "mcp4meme"]
}
}
}
Available Tools
Bonding Curve & Token Analysis
get_bonding_curve_progress(token_address: str)- Get token bonding curve progress percentageget_token_migration_status(token_address: str)- Check token migration status from bonding curve to DEX
Trading & Market Data
get_latest_trades(token_address: str, limit: int = 10)- Get latest trading recordsget_token_price_usd(token_address: str)- Get current USD price for a tokenget_trading_volume(token_address: str, timeframe: str = "24h")- Get trading volume statistics
Trader & Liquidity Analysis
get_top_traders(token_address: str, limit: int = 10, timeframe: str = "24h")- Get top traders by volumeget_liquidity_events(token_address: str, limit: int = 10)- Get liquidity-related events
Discovery & Search
search_tokens_by_progress(min_progress: float = 90.0, max_progress: float = 95.0, limit: int = 20)- Search tokens by bonding curve progressget_trending_tokens(timeframe: str = "24h", sort_by: str = "volume", limit: int = 10)- Get trending tokens
Demo Tools (Legacy)
add(a: int, b: int) -> int- Add two numbersmultiply(a: int, b: int) -> int- Multiply two numbersget_greeting(name: str) -> str- Get a personalized greeting
Resources
config://mcp4meme- Server configuration and featuresconfig://fourmeme-proxy- Four.meme proxy contract configuration
API Configuration
The server uses the Bitquery API to fetch blockchain data. To use real data:
- Get a free API key from Bitquery.io
- Copy
.env.exampleto.env - Add your API key:
BITQUERY_API_KEY=your_key_here
Without an API key, the server returns mock data for testing.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。