
mcp_3d_relief
mcp\_3d\_relief
README
MCP STL 3D Relief Generator
<div align="center">
中文 · Introduction to MCP · Wiki
</div>
This project provides a MCP server that converts 2D images into 3D relief models in STL format, suitable for 3D printing or rendering.
Features
- Convert any image to a 3D relief model
- Control model dimensions (width, thickness)
- Add optional base to the 3D model
- Invert depth for different relief effects
- Fast processing with immediate download links
Installation
Prerequisites
- Python 3.10+
- uv
Option 1: Local Installation
- Clone the repository:
git clone https://github.com/bigchx/mcp_3d_relief.git
cd mcp_3d_relief
- Install dependencies:
uv pip sync requirements.txt
- Run/Inspect the server:
mcp run server.py
mcp dev server.py
Usage
JSON Configuration
{
"mcpServers": {
"mcp_3d_relief": {
"command": "uv",
"args": ["--directory", "{fill_in_your_path_here}", "run", "server.py"]
}
}
}
MCP Tool Parameters
image_path
: Local path or web URL to the input image filemodel_width
: Width of the 3D model in mm (default: 50.0)model_thickness
: Maximum thickness/height of the 3D model in mm (default: 5.0)base_thickness
: Thickness of the base in mm (default: 2.0)skip_depth
: Whether to use the image directly or generate a depth map (default: true)invert_depth
: Invert the relief (bright areas become low instead of high) (default: false)detail_level
: Controls the resolution of the processed image (default: 1.0). At detail_level = 1.0, the image is processed at 320px resolution, producing an STL file typically under 100MB. Higher values improve detail quality but significantly increase both processing time and STL file size. For example, doubling the detail_level can increase file size by 4x or more. Use with caution.
Response
The MCP Tool returns a JSON response with:
{
"status": "success",
"depth_map_path": "path/to/yourimage_depth_map.png",
"stl_path": "path/to/yourimage.stl"
}
Where LLMs can access the generated files from this MCP server, using the provided URLs.
Command Line
You can also use the script directly from the command line to generate a relief model from an image:
python3 relief.py path/to/your/image.jpg
External Depth Map Generation
For higher quality depth maps, you can use external depth map generation services like Depth-Anything-V2. This service can generate more accurate depth maps that you can then use with this project:
- Visit https://huggingface.co/spaces/depth-anything/Depth-Anything-V2
- Upload your image to generate a depth map
- Download the generated depth map
- Use this depth map with our converter by setting
skip_depth=false
This approach can provide better 3D relief models, especially for complex images.
How It Works
- The image is processed to create a depth map (darker pixels = lower, brighter pixels = higher)
- The depth map is converted to a 3D mesh with triangular facets
- A base is added to the bottom of the model
- The model is saved as an STL file
Our partners
<div style="display: flex; justify-content: center; align-items: center; gap: 20px; margin: 30px 0;"> <div style="flex: 1; text-align: center; padding: 15px; border-radius: 8px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); transition: all 0.2s ease-in-out; max-width: 300px; hover:transform: translateY(-5px); hover:box-shadow: 0 6px 16px rgba(0,0,0,0.15);"> <a href="https://www.voxeldance.com/" style="display: block; height: 100%;"> <img src="images/voxeldance.png" alt="voxeldance" style="max-width: 100%; height: auto; object-fit: contain; transition: opacity 0.2s ease-in-out;"> </a> </div> <div style="flex: 1; text-align: center; padding: 15px; border-radius: 8px; box-shadow: 0 4px 12px rgba(0,0,0,0.1); transition: all 0.2s ease-in-out; max-width: 300px; hover:transform: translateY(-5px); hover:box-shadow: 0 6px 16px rgba(0,0,0,0.15);"> <a href="https://www.3dzyk.cn/" style="display: block; height: 100%;"> <img src="images/3dzyk.png" alt="3dzyk" style="max-width: 100%; height: auto; object-fit: contain; transition: opacity 0.2s ease-in-out;"> </a> </div> </div>
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。