MCPatterns

MCPatterns

An MCP server that enables users to store and retrieve personalized coding patterns, serving as a persistent memory layer for LLM agents. It allows AI models to generate code and refactor projects according to a user's specific styles, technologies, and established development conventions.

Category
访问服务器

README

MCPatterns

MCPatterns is a Model Context Protocol (MCP) server that enables users to save and retrieve personalized coding patterns. It helps LLMs learn how an individual codes by storing structured patterns categorized by technology, use case, and style.

🧠 Purpose

This server acts as a persistent memory layer for LLM agents, allowing them to reference a user's preferred coding styles, patterns, and conventions. It supports:

  • Personalized code generation based on stored patterns
  • Consistent refactoring following user preferences
  • Style-aware suggestions using familiar patterns
  • Long-term memory of coding practices across sessions

🧩 MCP Integration

MCPatterns follows the Model Context Protocol specification, providing tools for creating, reading, updating, and deleting coding patterns. It uses JSONL (newline-delimited JSON) storage for atomic operations and data consistency.

🗂 Pattern Schema

interface Pattern {
  name: string;                              // Unique identifier
  category: string;                          // e.g., "Backend", "Frontend", "Database"
  description: string;                       // What this pattern does
  use_cases: string[];                       // When to use this pattern
  technologies: string[];                    // Languages, frameworks, libraries
  code_examples: { [language: string]: string }; // Code samples by language
}

Example Pattern

{
  "name": "Error Handling Middleware",
  "category": "Backend",
  "description": "Express middleware for consistent error handling with structured responses",
  "use_cases": ["API development", "Middleware composition", "Error standardization"],
  "technologies": ["Node.js", "Express", "TypeScript"],
  "code_examples": {
    "JavaScript": "app.use((err, req, res, next) => {\n  console.error(err.stack);\n  res.status(500).json({ error: 'Something went wrong!' });\n});",
    "TypeScript": "app.use((err: Error, req: Request, res: Response, next: NextFunction) => {\n  console.error(err.stack);\n  res.status(500).json({ error: 'Something went wrong!' });\n});"
  }
}

🔧 Available Tools

MCPatterns provides the following MCP tools:

create_patterns

Create multiple new coding patterns in the database.

Input:

{
  "patterns": [Pattern, ...]
}

add_code_examples

Add new code examples to existing patterns.

Input:

{
  "additions": [
    {
      "patternName": "string",
      "examples": { "language": "code" }
    }
  ]
}

delete_patterns

Delete multiple patterns by name.

Input:

{
  "patternNames": ["pattern1", "pattern2"]
}

delete_code_examples

Remove specific code examples from patterns.

Input:

{
  "deletions": [
    {
      "patternName": "string",
      "languages": ["JavaScript", "TypeScript"]
    }
  ]
}

read_patterns

Retrieve all stored patterns.

Input: None

search_patterns

Search patterns by query across all fields.

Input:

{
  "query": "search term"
}

open_patterns

Retrieve specific patterns by name.

Input:

{
  "names": ["pattern1", "pattern2"]
}

🗄 Storage

MCPatterns uses JSONL (newline-delimited JSON) format for data storage:

  • File location: Configurable via PATTERNS_FILE_PATH environment variable
  • Default location: patterns.json in the server directory
  • Format: Each line contains a JSON object with type: "pattern"
  • Atomic operations: Full file rewrite ensures data consistency

🚀 Getting Started

Installation

git clone https://github.com/nicholasrubright/mcpatterns.git
cd mcpatterns
pnpm install

Development

pnpm run dev

Building

pnpm run build

Running

pnpm start
# or
mcpatterns

🔧 Configuration

Environment Variables

  • PATTERNS_FILE_PATH: Custom path for the patterns database file
    • Can be absolute path or relative to script directory
    • Defaults to patterns.json in server directory

Claude Desktop Integration

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "mcpatterns": {
      "command": "npx",
      "args": ["-y", "@mcpatterns/server"]
    }
  }
}

With Custom Storage Path

{
  "mcpServers": {
    "mcpatterns": {
      "command": "npx",
      "args": ["-y", "@mcpatterns/server"],
      "env": {
        "PATTERNS_FILE_PATH": "/path/to/custom/patterns.json"
      }
    }
  }
}

VS Code Integration

Add to your VS Code settings (settings.json):

{
  "mcp": {
    "servers": {
      "mcpatterns": {
        "command": "npx",
        "args": ["-y", "@mcpatterns/server"]
      }
    }
  }
}

💡 Usage Tips

For LLM Agents

MCPatterns works best when integrated into your AI workflow with prompts like:

Before generating code, search my patterns for relevant examples using the technologies I'm working with. Use my established patterns and coding style preferences when creating new code.

Pattern Organization

  • Use descriptive names that clearly identify the pattern's purpose
  • Group related patterns with consistent category naming
  • Include comprehensive use cases to improve searchability
  • Provide examples in multiple languages when applicable

Best Practices

  • Atomic patterns: Store focused, single-purpose patterns
  • Rich metadata: Include detailed use cases and technology tags
  • Version examples: Keep code examples up-to-date with current practices
  • Search-friendly: Use descriptive language in descriptions and use cases

📜 License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选