McpDocs
Okay, this is a complex task involving several moving parts. Here's a breakdown of how you can provide Elixir project documentation (including dependencies) to an LLM via an SSE (Server-Sent Events) MCP (Message Channel Protocol) server. I'll outline the steps, tools, and considerations. **Conceptual Overview** 1. **Documentation Extraction:** You need to extract the documentation from your Elixir project and its dependencies. This involves parsing the Elixir code and extracting the `@doc` attributes, type specifications, and module/function signatures. 2. **Data Formatting:** The extracted documentation needs to be formatted into a structured format suitable for an LLM. JSON is a common choice. Consider including metadata like module name, function name, arity, and the actual documentation string. 3. **SSE Server:** You'll need an Elixir-based SSE server that can stream the formatted documentation to the LLM. This server will listen for a connection from the LLM and then push the documentation data as SSE events. 4. **MCP Integration (if needed):** If you need to use MCP, you'll need to integrate an MCP library into your Elixir SSE server. MCP provides a standardized way for clients (like your LLM) to discover and connect to services. 5. **LLM Integration:** The LLM needs to be configured to connect to the SSE server (and potentially use MCP to discover it) and consume the SSE events. The LLM will then process the documentation data to learn about your project. **Detailed Steps and Code Examples** **1. Documentation Extraction** * **Using `ExDoc` (Recommended):** `ExDoc` is the standard documentation generator for Elixir projects. It can generate HTML documentation, but more importantly, it provides an API for programmatically accessing the documentation data. * **Add `ExDoc` to your `mix.exs`:** ```elixir def deps do [ {:ex_doc, "~> 0.31", only: :dev, runtime: false} ] end ``` * **Use `ExDoc.Markdown.parse/1` and `ExDoc.Type.to_string/1`:** You can use `ExDoc`'s internal functions to parse the documentation strings and type specifications. This gives you a structured representation of the documentation. * **Example (Conceptual):** ```elixir defmodule DocExtractor do require Logger def extract_docs(project_path) do # This is a simplified example. You'll need to adapt it to your project structure. Mix.Task.run("compile", ["--warnings-as-errors"]) # Ensure code is compiled Mix.Task.run("docs", []) # Generate docs (necessary for ExDoc to work) Enum.map(Mix.Project.config()[:modules], fn module -> try do module |> Module.concat(".ex") |> Code.require_file() module |> Module.concat(".ex") |> File.read!() |> extract_module_docs(module) rescue e -> Logger.error("Error extracting docs for #{module}: #{inspect(e)}") [] end end) |> List.flatten() end defp extract_module_docs(file_content, module) do # This is a very basic example. You'll need to use a proper Elixir parser # (like `Code.string_to_quoted/1` and then traverse the AST) to reliably # extract the @doc attributes and function definitions. This is a complex task. # The following is a placeholder. # Example using Regex (fragile, but illustrative): Regex.scan(~r/@doc """(.*?)"""\s+def\s+(.*?)\(/ms, file_content) |> Enum.map(fn [doc, function_name] -> %{ module: module, function: function_name, doc: String.trim(doc) } end) end end # Example usage: # docs = DocExtractor.extract_docs(".") # "." is the current project directory # IO.inspect(docs) ``` * **Important Considerations for `ExDoc`:** * `ExDoc` relies on the code being compiled and the documentation being generated. Make sure you run `mix compile` and `mix docs` before attempting to extract the documentation programmatically. * Directly accessing `ExDoc`'s internal data structures can be fragile, as the internal implementation might change between versions. Consider using the HTML output and parsing it if a more stable API is needed. * Handling dependencies: You'll need to iterate through your project's dependencies and extract documentation from them as well. This might involve finding the dependency's source code and running `ExDoc` on it. * **Alternative: AST Parsing (Advanced):** You can use Elixir's `Code.string_to_quoted/1` function to parse the Elixir code into an Abstract Syntax Tree (AST). You can then traverse the AST to find `@doc` attributes, function definitions, and type specifications. This approach is more robust but also more complex. Libraries like `Macro` can help with AST manipulation. **2. Data Formatting (JSON)** * **Example JSON Structure:** ```json [ { "module": "MyModule", "function": "my_function", "arity": 1, "doc": "This function does something.", "spec": "my_function(integer) :: string" }, { "module": "MyModule", "function": "another_function", "arity": 2, "doc": "This function does something else.", "spec": "another_function(string, boolean) :: atom" } ] ``` * **Elixir Code to Generate JSON:** ```elixir defmodule JsonFormatter do def format_docs(docs) do docs |> Enum.map(fn doc -> %{ module: doc.module, function: doc.function, arity: doc.arity || 0, # Add arity if available doc: doc.doc, spec: doc.spec || "" # Add spec if available } end) |> Jason.encode! # Use Jason or Poison for JSON encoding end end ``` **3. SSE Server** * **Using `Plug` and `Cowboy`:** `Plug` is a specification for building web applications in Elixir, and `Cowboy` is a popular web server that implements the `Plug` specification. * **Add dependencies to `mix.exs`:** ```elixir def deps do [ {:plug, "~> 1.14"}, {:cowboy, "~> 2.10"}, {:jason, "~> 1.4"} # For JSON encoding ] end ``` * **Create a Plug module:** ```elixir defmodule DocServer do use Plug.Router require Logger def init(_opts) do :ok end def call(conn, _opts) do dispatch(conn) end plug Plug.Logger plug :match plug :dispatch get "/docs" do conn = conn |> Plug.Conn.put_resp_content_type("text/event-stream") |> Plug.Conn.put_resp_header("cache-control", "no-cache") |> Plug.Conn.send_resp(200, stream_docs()) end match _ do send_resp(conn, 404, "Not Found") end defp stream_docs() do # Replace this with your actual documentation extraction and formatting logic docs = DocExtractor.extract_docs(".") # Extract docs from the project json_string = JsonFormatter.format_docs(docs) # Format as JSON # Split the JSON string into smaller chunks for streaming chunks = String.split(json_string, "") |> Enum.chunk_every(500) Enum.reduce(chunks, "", fn chunk, acc -> event_data = "data: " <> Enum.join(chunk, "") <> "\n\n" acc <> event_data end) end end ``` * **Start the server in your `application.ex`:** ```elixir def start(_type, _args) do children = [ {Plug.Cowboy, scheme: :http, plug: DocServer, options: [port: 4000]} ] Supervisor.start_link(children, strategy: :one_for_one) end ``` * **Explanation:** * The `/docs` endpoint serves the SSE stream. * `Plug.Conn.put_resp_content_type("text/event-stream")` sets the correct content type for SSE. * `Plug.Conn.put_resp_header("cache-control", "no-cache")` disables caching. * `stream_docs()` is where you'll extract, format, and stream the documentation. The example shows how to split the JSON string into chunks to avoid sending very large events. * Each SSE event is formatted as `data: <your_data>\n\n`. **4. MCP Integration (Optional)** * **Choose an MCP Library:** There are several MCP libraries available for Elixir. Research and choose one that suits your needs. Some options might include libraries that wrap existing MCP implementations. * **Integrate the Library:** Follow the library's documentation to integrate it into your SSE server. This will typically involve: * Adding the library as a dependency in `mix.exs`. * Configuring the MCP server address and other settings. * Registering your SSE service with the MCP server. This allows the LLM to discover your service. * **Example (Conceptual - using a hypothetical MCP library):** ```elixir defmodule DocServer do use Plug.Router require Logger @mcp_server "mcp.example.com:8080" # Replace with your MCP server address def init(_opts) do # Register the service with the MCP server :ok = MCP.register_service(@mcp_server, "elixir-doc-server", "/docs") :ok end # ... (rest of the DocServer code) ... end ``` **5. LLM Integration** * **LLM Configuration:** Configure your LLM to connect to the SSE server. This will typically involve: * Providing the URL of the SSE endpoint (e.g., `http://localhost:4000/docs`). * If using MCP, configuring the LLM to use the MCP server to discover the service. * **SSE Event Handling:** The LLM needs to be able to parse the SSE events and extract the JSON data. Most LLM frameworks have libraries or built-in support for handling SSE streams. * **Data Processing:** The LLM will then process the JSON data to learn about your Elixir project's documentation. This might involve: * Indexing the documentation for efficient retrieval. * Using the documentation to answer questions about the project. * Using the documentation to generate code or documentation. **Important Considerations and Best Practices** * **Error Handling:** Implement robust error handling throughout the process. Log errors to help with debugging. * **Security:** If you're exposing the SSE server to the internet, consider security measures such as authentication and authorization. * **Scalability:** If you need to handle a large number of LLM connections, consider using a more scalable web server than `Cowboy` (e.g., `Phoenix` with `Cowboy2`). * **Chunking:** Sending large SSE events can cause performance problems. Chunk the data into smaller events. * **Heartbeats:** Implement a heartbeat mechanism to ensure that the connection between the LLM and the SSE server is still alive. The server can send a periodic "ping" event, and the LLM can respond with a "pong" event. * **Dependencies:** Carefully manage your project's dependencies. Use a dependency management tool like `mix` to ensure that you're using compatible versions of all libraries. * **Testing:** Write unit tests and integration tests to ensure that your code is working correctly. * **Rate Limiting:** Implement rate limiting on the SSE server to prevent the LLM from overwhelming the server with requests. * **Documentation Updates:** Consider how you'll handle documentation updates. You might need to implement a mechanism to notify the LLM when the documentation has changed. **Example LLM Integration (Conceptual - Python)** ```python import sseclient import requests import json url = 'http://localhost:4000/docs' # Replace with your SSE server URL try: response = requests.get(url, stream=True) response.raise_for_status() # Raise HTTPError for bad responses (4xx or 5xx) client = sseclient.SSEClient(response) for event in client.events(): try: data = json.loads(event.data) print(f"Received data: {data}") # Process the documentation data here (e.g., index it, use it for QA) except json.JSONDecodeError as e: print(f"Error decoding JSON: {e}, data: {event.data}") except Exception as e: print(f"Error processing event: {e}") except requests.exceptions.RequestException as e: print(f"Request error: {e}") except Exception as e: print(f"General error: {e}") ``` **Summary** This is a complex project that requires a good understanding of Elixir, web servers, SSE, and LLMs. Start with the documentation extraction and SSE server, and then add MCP integration if needed. Remember to test your code thoroughly and handle errors gracefully. Good luck!
josiahdahl
README
推荐服务器
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
MCP Package Docs Server
促进大型语言模型高效访问和获取 Go、Python 和 NPM 包的结构化文档,通过多语言支持和性能优化来增强软件开发。
Claude Code MCP
一个实现了 Claude Code 作为模型上下文协议(Model Context Protocol, MCP)服务器的方案,它可以通过标准化的 MCP 接口来使用 Claude 的软件工程能力(代码生成、编辑、审查和文件操作)。
@kazuph/mcp-taskmanager
用于任务管理的模型上下文协议服务器。它允许 Claude Desktop(或任何 MCP 客户端)在基于队列的系统中管理和执行任务。
mermaid-mcp-server
一个模型上下文协议 (MCP) 服务器,用于将 Mermaid 图表转换为 PNG 图像。
Jira-Context-MCP
MCP 服务器向 AI 编码助手(如 Cursor)提供 Jira 工单信息。
Linear MCP Server
一个模型上下文协议(Model Context Protocol)服务器,它与 Linear 的问题跟踪系统集成,允许大型语言模型(LLM)通过自然语言交互来创建、更新、搜索和评论 Linear 问题。
Sequential Thinking MCP Server
这个服务器通过将复杂问题分解为顺序步骤来促进结构化的问题解决,支持修订,并通过完整的 MCP 集成来实现多条解决方案路径。
Curri MCP Server
通过管理文本笔记、提供笔记创建工具以及使用结构化提示生成摘要,从而实现与 Curri API 的交互。