MCPizza
An MCP server that allows AI assistants to order Domino's Pizza through an unofficial API, with features for store location, menu browsing, and order management.
README
<<<<<<< HEAD
MCPizza - Domino's Pizza Ordering MCP Server
An MCP (Model Context Protocol) server that enables AI assistants to order pizza using the unofficial Domino's API.
🍕 Features
- Store Locator: Find nearest Domino's stores by address/zip code
- Menu Browsing: Search for pizzas, wings, sides, and more
- Order Management: Add items to cart and calculate totals
- Customer Info: Handle delivery addresses and contact information
- Safe Preview: Prepare orders without placing them (safety first!)
🚀 Quick Demo
# See it in action with mock data
python mcpizza/demo_no_real_api.py
📦 Installation
See INSTALLATION.md for detailed setup instructions.
Quick start:
# Install uv package manager
curl -LsSf https://astral.sh/uv/install.sh | sh
# Setup environment
uv venv && source .venv/bin/activate
uv pip install pizzapi requests pydantic
# Run demo
python mcpizza/demo_no_real_api.py
🛠 Available MCP Tools
| Tool | Description |
|---|---|
find_dominos_store |
Find nearest Domino's location |
get_store_menu_categories |
Get menu categories |
search_menu |
Search for specific menu items |
add_to_order |
Add items to your pizza order |
view_order |
View current order contents |
set_customer_info |
Set delivery information |
calculate_order_total |
Get order total with tax/fees |
prepare_order |
Prepare order for placement (safe mode) |
🎯 Usage Examples
# Find store
result = server.call_tool("find_dominos_store", {"address": "10001"})
# Search for pizza
result = server.call_tool("search_menu", {"query": "pepperoni pizza"})
# Add to order
result = server.call_tool("add_to_order", {
"item_code": "M_PEPPERONI",
"quantity": 1
})
⚠️ Safety & Disclaimers
- Real order placement is DISABLED by default for safety
- Uses unofficial Domino's API for educational purposes only
- All order functionality works except final placement step
- Use responsibly and in accordance with Domino's terms of service
🔧 Integration
Ready to integrate with MCP clients! The server provides a complete pizza ordering workflow while maintaining safety through disabled order placement.
📝 Requirements
- Python 3.9+
- pizzapi package for Domino's API access
- Valid address for store lookup
- Internet connection for API calls
Built with ❤️ for the MCP ecosystem
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。