MCPMake
Enables management and execution of Python scripts with automatic LLM-extracted argument schemas and validation. Provides script registry, execution history, and intelligent argument parsing like make but for Python scripts.
README
MCPMake
An MCP (Model Context Protocol) server for managing and running Python scripts with LLM-extracted schemas - like make, but smarter.
Features
- Automatic Schema Extraction: Uses LLMs (Claude Sonnet 4 or GPT-4.1) to analyze Python scripts and extract argument schemas
- Script Registry: Store and manage multiple scripts with metadata
- Input Validation: Validates arguments against JSON Schema before execution
- Execution History: Tracks all script runs with full output logs
- Environment Variables: Pass custom env vars per execution
- Flexible Execution: Custom Python interpreters, timeouts, and output truncation
- Update & Re-analyze: Refresh script schemas when code changes
Installation
# Clone or navigate to the project directory
cd mcpmake
# Install in development mode
pip install -e .
Configuration
Set up API keys
You'll need an API key for either Anthropic or OpenAI (or both):
export ANTHROPIC_API_KEY="your-key-here"
# or
export OPENAI_API_KEY="your-key-here"
Add to MCP settings
Add the server to your MCP client configuration (e.g., Claude Desktop):
{
"mcpServers": {
"mcpmake": {
"command": "python",
"args": ["-m", "mcpmake.server"],
"env": {
"ANTHROPIC_API_KEY": "your-key-here"
}
}
}
}
Usage
1. Register a Script
# Register a Python script with automatic schema extraction
register_script(
name="data_processor",
path="/path/to/script.py",
description="Processes data files", # optional, auto-generated if omitted
python_path="/usr/bin/python3", # optional
timeout_seconds=240, # optional, default 240
min_lines=1, # optional, default 1
llm_provider="anthropic" # optional, "anthropic" or "openai"
)
2. List Scripts
list_scripts()
# Shows all registered scripts with descriptions
3. Get Script Info
get_script_info(name="data_processor")
# Shows detailed schema, path, recent runs, etc.
4. Run a Script
run_script(
name="data_processor",
args={
"input_file": "data.csv",
"output_dir": "/tmp/output",
"verbose": true
},
env_vars={ # optional
"API_KEY": "secret123"
},
python_path="/usr/bin/python3", # optional, overrides default
timeout=300, # optional, overrides default
output_lines=100 # optional, default 100
)
5. View Run History
get_run_history(
name="data_processor", # optional, shows all scripts if omitted
limit=10 # optional, default 10
)
6. Update Script Schema
# Re-analyze script after code changes
update_script(
name="data_processor",
llm_provider="anthropic" # optional
)
7. Delete Script
delete_script(name="data_processor")
Data Storage
MCPMake stores data in ~/.mcpmake/:
~/.mcpmake/
├── scripts.json # Script registry and metadata
├── history.jsonl # Execution history log
└── outputs/ # Full script outputs
├── script1_timestamp.log
└── script2_timestamp.log
How It Works
-
Registration: When you register a script, MCPMake:
- Reads the script file
- Sends it to an LLM (Claude Sonnet 4 or GPT-4.1)
- Extracts a JSON Schema describing the script's arguments
- Extracts a description from docstrings/comments
- Stores everything in
scripts.json
-
Execution: When you run a script:
- Validates your arguments against the stored JSON Schema
- Checks if the script file still exists
- Builds command-line arguments from your input
- Runs the script with specified Python interpreter and env vars
- Captures stdout/stderr with timeout protection
- Saves full output to a log file
- Returns truncated output (first N lines)
- Logs execution details to history
-
History: All runs are logged with:
- Timestamp, arguments, exit code
- Execution time
- Full output file path
- Environment variables used
Example Python Scripts
MCPMake works best with scripts that use:
argparse
import argparse
parser = argparse.ArgumentParser(description="Process data files")
parser.add_argument("--input-file", required=True, help="Input CSV file")
parser.add_argument("--output-dir", required=True, help="Output directory")
parser.add_argument("--verbose", action="store_true", help="Verbose output")
args = parser.parse_args()
click
import click
@click.command()
@click.option("--input-file", required=True, help="Input CSV file")
@click.option("--output-dir", required=True, help="Output directory")
@click.option("--verbose", is_flag=True, help="Verbose output")
def main(input_file, output_dir, verbose):
pass
Simple functions
def main(input_file: str, output_dir: str, verbose: bool = False):
"""
Process data files.
Args:
input_file: Path to input CSV file
output_dir: Output directory path
verbose: Enable verbose logging
"""
pass
Requirements
- Python 3.10+
- MCP SDK
- Anthropic SDK (for Claude)
- OpenAI SDK (for GPT)
- jsonschema
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。