
MCPO - MCP Pollinations Proxy
A Docker-containerized MCP proxy that provides AI image generation, text generation, vision analysis, and text-to-speech capabilities through REST endpoints using Pollinations AI services. Enables multimodal AI interactions including image creation, transformation, OCR, and audio generation through standard HTTP APIs.
README
🚀 MCPO - MCP Pollinations Proxy
A Docker-containerized MCP (Model Context Protocol) proxy that combines mcpo CLI tool with Pollinations MCP server, providing AI image, text, audio, and vision generation capabilities through standard REST endpoints.
🌟 Features
🎨 Multimodal AI Capabilities
- Image Generation: Create stunning images from text prompts with 1024x1024 default resolution
- Image-to-Image: Transform existing images using text descriptions
- Vision Analysis: Analyze, describe, compare images and extract text (OCR)
- Text Generation: Simple and advanced text generation with system prompts
- Text-to-Speech: Convert text to speech with multiple voice options
- Audio Generation: Create contextual audio responses
🔧 Technical Features
- OpenAPI REST Endpoints: Standard HTTP/REST interface for all MCP capabilities
- Docker Containerized: Easy deployment and consistent environment
- Real-time Processing: Direct API integration with Pollinations services
- Multiple Model Support: Access various AI models for different tasks
🚀 Quick Start
Prerequisites
- Docker and Docker Compose
- Port 7777 available
Installation & Usage
-
Clone the repository
git clone <repository-url> cd mcpo
-
Build and run the container
docker-compose build docker-compose up
-
Access the service
- Service runs on:
http://localhost:7777
- OpenAPI docs:
http://localhost:7777/docs
- API endpoints:
http://localhost:7777/api/...
- Service runs on:
Development Commands
# Build the container
docker-compose build
# Run in detached mode
docker-compose up -d
# View logs
docker-compose logs
# Stop the service
docker-compose down
🎯 API Endpoints
The service exposes Pollinations MCP server functionality through REST endpoints:
🖼️ Image Generation
POST /api/generateImage
- Generate image from text promptPOST /api/generateImageUrl
- Get image generation URLPOST /api/generateImageToImage
- Transform image with text promptGET /api/listImageModels
- List available image models
📝 Text Generation
POST /api/generateText
- Simple text generationPOST /api/generateAdvancedText
- Advanced text with system promptsGET /api/listTextModels
- List available text models
👁️ Vision & Analysis
POST /api/analyzeImageFromUrl
- Analyze image from URLPOST /api/analyzeImageFromData
- Analyze base64 image dataPOST /api/compareImages
- Compare two imagesPOST /api/extractTextFromImage
- OCR text extraction
🎵 Audio Generation
POST /api/sayText
- Text-to-speech conversionPOST /api/respondAudio
- Generate contextual audio responsesGET /api/listAudioVoices
- List available voices
🏗️ Architecture
┌─────────────────┐ ┌──────────────┐ ┌─────────────────────┐
│ Client App │───▶│ MCPO Proxy │───▶│ Pollinations API │
│ (HTTP/REST) │ │ (Port 7777) │ │ (MCP Protocol) │
└─────────────────┘ └──────────────┘ └─────────────────────┘
Container Stack
- Base: Node.js 18 Alpine Linux
- Python: Installed for mcpo CLI tool
- Port: 7777 exposed for HTTP access
- Host: Configured to bind to 0.0.0.0
Service Flow
- Container starts with
mcpo
CLI tool mcpo
proxies thepollinations-model-context-protocol
MCP server- MCP server capabilities become available via OpenAPI endpoints
- External applications use standard HTTP/REST calls
📁 Project Structure
mcpo/
├── docker-compose.yml # Docker compose configuration
├── Dockerfile # Container definition
├── CLAUDE.md # Development instructions
├── pollinations-mcp-src/ # MCP server source code
│ ├── src/
│ │ ├── services/
│ │ │ ├── imageService.js # Image generation & transformation
│ │ │ ├── textService.js # Text generation (simple & advanced)
│ │ │ ├── audioService.js # Text-to-speech & audio
│ │ │ ├── visionService.js # Image analysis & OCR
│ │ │ ├── authService.js # Authentication
│ │ │ └── resourceService.js # Resource management
│ │ ├── utils/
│ │ │ ├── coreUtils.js # Core utilities
│ │ │ ├── polyfills.js # Node.js polyfills
│ │ │ └── schemaUtils.js # Schema validation
│ │ └── index.js # Main MCP server
│ └── pollinations-mcp.js # Entry point
└── README.md # This file
🔧 Configuration
Default Settings
- Image Resolution: 1024x1024 pixels
- Image Quality: Private=true, NoLogo=true, Enhance=true
- Text Generation: OpenAI-compatible models
- Audio Format: MP3 with Alloy voice
- Vision Models: GPT-4o for image analysis
Environment Variables
The container automatically configures the MCP proxy without additional environment variables needed.
🎨 Usage Examples
Image Generation
curl -X POST http://localhost:7777/api/generateImage \
-H "Content-Type: application/json" \
-d '{
"prompt": "A serene mountain landscape at sunset",
"options": {
"width": 1024,
"height": 1024,
"model": "flux"
}
}'
Vision Analysis
curl -X POST http://localhost:7777/api/analyzeImageFromUrl \
-H "Content-Type: application/json" \
-d '{
"imageUrl": "https://example.com/image.jpg",
"prompt": "What do you see in this image?"
}'
Text-to-Speech
curl -X POST http://localhost:7777/api/sayText \
-H "Content-Type: application/json" \
-d '{
"text": "Hello, this is a test of text to speech",
"voice": "alloy",
"format": "mp3"
}'
🤝 Contributing
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🙏 Acknowledgments
- Pollinations.AI for the amazing AI APIs
- Model Context Protocol for the MCP standard
- mcpo CLI tool for MCP to OpenAPI conversion
🔗 Links
Built with ❤️ using Docker, Node.js, and Python
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。