MCPO - MCP Pollinations Proxy

MCPO - MCP Pollinations Proxy

A Docker-containerized MCP proxy that provides AI image generation, text generation, vision analysis, and text-to-speech capabilities through REST endpoints using Pollinations AI services. Enables multimodal AI interactions including image creation, transformation, OCR, and audio generation through standard HTTP APIs.

Category
访问服务器

README

🚀 MCPO - MCP Pollinations Proxy

A Docker-containerized MCP (Model Context Protocol) proxy that combines mcpo CLI tool with Pollinations MCP server, providing AI image, text, audio, and vision generation capabilities through standard REST endpoints.

🌟 Features

🎨 Multimodal AI Capabilities

  • Image Generation: Create stunning images from text prompts with 1024x1024 default resolution
  • Image-to-Image: Transform existing images using text descriptions
  • Vision Analysis: Analyze, describe, compare images and extract text (OCR)
  • Text Generation: Simple and advanced text generation with system prompts
  • Text-to-Speech: Convert text to speech with multiple voice options
  • Audio Generation: Create contextual audio responses

🔧 Technical Features

  • OpenAPI REST Endpoints: Standard HTTP/REST interface for all MCP capabilities
  • Docker Containerized: Easy deployment and consistent environment
  • Real-time Processing: Direct API integration with Pollinations services
  • Multiple Model Support: Access various AI models for different tasks

🚀 Quick Start

Prerequisites

  • Docker and Docker Compose
  • Port 7777 available

Installation & Usage

  1. Clone the repository

    git clone <repository-url>
    cd mcpo
    
  2. Build and run the container

    docker-compose build
    docker-compose up
    
  3. Access the service

    • Service runs on: http://localhost:7777
    • OpenAPI docs: http://localhost:7777/docs
    • API endpoints: http://localhost:7777/api/...

Development Commands

# Build the container
docker-compose build

# Run in detached mode
docker-compose up -d

# View logs
docker-compose logs

# Stop the service
docker-compose down

🎯 API Endpoints

The service exposes Pollinations MCP server functionality through REST endpoints:

🖼️ Image Generation

  • POST /api/generateImage - Generate image from text prompt
  • POST /api/generateImageUrl - Get image generation URL
  • POST /api/generateImageToImage - Transform image with text prompt
  • GET /api/listImageModels - List available image models

📝 Text Generation

  • POST /api/generateText - Simple text generation
  • POST /api/generateAdvancedText - Advanced text with system prompts
  • GET /api/listTextModels - List available text models

👁️ Vision & Analysis

  • POST /api/analyzeImageFromUrl - Analyze image from URL
  • POST /api/analyzeImageFromData - Analyze base64 image data
  • POST /api/compareImages - Compare two images
  • POST /api/extractTextFromImage - OCR text extraction

🎵 Audio Generation

  • POST /api/sayText - Text-to-speech conversion
  • POST /api/respondAudio - Generate contextual audio responses
  • GET /api/listAudioVoices - List available voices

🏗️ Architecture

┌─────────────────┐    ┌──────────────┐    ┌─────────────────────┐
│   Client App    │───▶│  MCPO Proxy  │───▶│  Pollinations API   │
│   (HTTP/REST)   │    │  (Port 7777) │    │  (MCP Protocol)     │
└─────────────────┘    └──────────────┘    └─────────────────────┘

Container Stack

  • Base: Node.js 18 Alpine Linux
  • Python: Installed for mcpo CLI tool
  • Port: 7777 exposed for HTTP access
  • Host: Configured to bind to 0.0.0.0

Service Flow

  1. Container starts with mcpo CLI tool
  2. mcpo proxies the pollinations-model-context-protocol MCP server
  3. MCP server capabilities become available via OpenAPI endpoints
  4. External applications use standard HTTP/REST calls

📁 Project Structure

mcpo/
├── docker-compose.yml          # Docker compose configuration
├── Dockerfile                  # Container definition
├── CLAUDE.md                   # Development instructions
├── pollinations-mcp-src/       # MCP server source code
│   ├── src/
│   │   ├── services/
│   │   │   ├── imageService.js     # Image generation & transformation
│   │   │   ├── textService.js      # Text generation (simple & advanced)
│   │   │   ├── audioService.js     # Text-to-speech & audio
│   │   │   ├── visionService.js    # Image analysis & OCR
│   │   │   ├── authService.js      # Authentication
│   │   │   └── resourceService.js  # Resource management
│   │   ├── utils/
│   │   │   ├── coreUtils.js        # Core utilities
│   │   │   ├── polyfills.js        # Node.js polyfills
│   │   │   └── schemaUtils.js      # Schema validation
│   │   └── index.js                # Main MCP server
│   └── pollinations-mcp.js         # Entry point
└── README.md                    # This file

🔧 Configuration

Default Settings

  • Image Resolution: 1024x1024 pixels
  • Image Quality: Private=true, NoLogo=true, Enhance=true
  • Text Generation: OpenAI-compatible models
  • Audio Format: MP3 with Alloy voice
  • Vision Models: GPT-4o for image analysis

Environment Variables

The container automatically configures the MCP proxy without additional environment variables needed.

🎨 Usage Examples

Image Generation

curl -X POST http://localhost:7777/api/generateImage \
  -H "Content-Type: application/json" \
  -d '{
    "prompt": "A serene mountain landscape at sunset",
    "options": {
      "width": 1024,
      "height": 1024,
      "model": "flux"
    }
  }'

Vision Analysis

curl -X POST http://localhost:7777/api/analyzeImageFromUrl \
  -H "Content-Type: application/json" \
  -d '{
    "imageUrl": "https://example.com/image.jpg",
    "prompt": "What do you see in this image?"
  }'

Text-to-Speech

curl -X POST http://localhost:7777/api/sayText \
  -H "Content-Type: application/json" \
  -d '{
    "text": "Hello, this is a test of text to speech",
    "voice": "alloy",
    "format": "mp3"
  }'

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

🙏 Acknowledgments

🔗 Links


Built with ❤️ using Docker, Node.js, and Python

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选