Medical MCP Server

Medical MCP Server

A medical communication protocol server that enables PostMessage-based integration between iframes and parent applications, providing simulated medical tools for medication management, allergy tracking, and other healthcare functions.

Category
访问服务器

README

Medical MCP Postmessage Application

Current State: Ozwell Integration Status

No Real Ozwell API Integration

Currently, this application does NOT have actual Ozwell API integration. What you have is:

  1. Local simulation only - All "Ozwell" functionality is mocked
  2. Missing API calls - No HTTP requests to real Ozwell endpoints
  3. Incomplete implementation - Several methods are called but not implemented

🏗️ What Exists (Local Simulation)

  • ✅ MCP Server with medical tools (add medication, allergies, etc.)
  • ✅ PostMessage communication between iframe and parent
  • ✅ Local medical data management
  • ✅ Chat UI interface
  • ✅ Tool execution framework

🚫 What's Missing for Real Ozwell Integration

1. API Configuration

// You need real Ozwell API credentials
const ozwellConfig = {
    apiUrl: 'https://api.ozwell.com', // Real Ozwell API URL
    apiKey: 'your-actual-api-key',    // Real API key
    model: 'ozwell-medical-model'     // Real model name
};

2. API Implementation

The following methods in ozwell-integration.js need real implementation:

  • generateResponse() - Make HTTP calls to Ozwell chat API
  • parseToolCalls() - Parse Ozwell's tool call format
  • formatResponse() - Format Ozwell responses for display

3. Authentication

  • Obtain Ozwell API credentials
  • Implement proper API authentication
  • Handle API rate limits and errors

4. Medical Model Integration

  • Configure Ozwell medical model
  • Set up medical-specific prompts and context
  • Implement medical safety guardrails

🔧 How to Add Real Ozwell Integration

Step 1: Get Ozwell API Access

  1. Sign up for Ozwell API access
  2. Obtain API key and model information
  3. Review Ozwell's medical API documentation

Step 2: Update Configuration

// Update agent-iframe/ozwell-config.js
export const OzwellConfig = {
    apiUrl: 'https://api.ozwell.com',  // Real URL
    apiKey: 'your-real-api-key',       // Real API key
    model: 'ozwell-medical-v1'         // Real model name
};

Step 3: Implement API Calls

The ozwell-integration.js file has been updated with a template for real API integration. You need to:

  1. Replace the API URL and authentication
  2. Implement proper error handling
  3. Add medical context to API calls
  4. Handle streaming responses

Step 4: Test Integration

# Start the development server
npm run dev

# Test API calls in browser console

📁 Current Architecture

agent-iframe/               # Medical AI chat interface
├── ozwell-integration.js  # Ozwell API integration (needs real implementation)
├── ozwell-config.js       # API configuration
├── medical-mcp-server.js  # MCP server with medical tools
├── mcp-client.js          # Chat client and UI management
└── index.html             # Chat interface

parent-app/                # Medical practice simulation
├── medical-data.js        # Local medical data management
├── ozwell-agent-sim.js    # Iframe management and communication
└── index.html             # Practice management interface

🚀 To Run Current Application

# Install dependencies
npm install

# Start development server (Vite)
npm run dev

# Or use http-server for simple static serving
npx http-server -p 8080 -c-1

Access:

  • Parent app: http://localhost:3000/parent-app/
  • Agent iframe: http://localhost:3000/agent-iframe/

⚠️ Important Notes

  1. This is currently a proof-of-concept with local simulation only
  2. No real AI or Ozwell integration exists yet
  3. Medical data is simulated for demonstration purposes
  4. Not suitable for production medical use without proper integration

🎯 Next Steps

  1. Obtain Ozwell API credentials
  2. Implement real API calls in ozwell-integration.js
  3. Add proper error handling and rate limiting
  4. Test with real medical scenarios
  5. Add medical safety and compliance features

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选