MedX MCP Server
Provides AI-powered medical consultation and clinical decision support through diagnostic analysis and personalized healthcare recommendations using OpenAI integration.
README
MedX MCP Server
AI-powered clinical agentic platform featuring our MedX-powered AI Agents and HealthOS, delivering advanced diagnostic support and personalized healthcare.
Overview
The MedX MCP Server provides a RESTful API for AI agents to access medical AI capabilities. It supports:
- Advanced diagnostic support
- Personalized healthcare recommendations
- Clinical decision support
- AI-powered medical consultations
Features
- ✅ RESTful API with Server-Sent Events (SSE) streaming
- ✅ Asynchronous tool execution
- ✅ Session management for conversations
- ✅ Idempotent requests
- ✅ Tool cancellation
- ✅ Health and readiness checks
Quick Start
Server Setup
# Install dependencies
pip install -r requirements.txt
# Set environment variables
export OPENAI_API_KEY="your-openai-key"
export MCP_SERVER_TOKEN="your-secret-token"
# Run server
python main.py
Server runs on http://localhost:8000 by default.
Client Usage
from client import MCPClient
# Initialize client
client = MCPClient(
base_url="http://localhost:8000",
auth_token="your-token"
)
# Discover capabilities
manifest = await client.discover()
print(manifest['description'])
# Call (simplified)
result = await client.call(
messages=[{"role": "user", "content": "What is anemia?"}]
)
Documentation
- CLIENT_USAGE_GUIDE.md - Complete client usage guide
- API_DOCUMENTATION.md - Full API reference
- API_QUICK_REFERENCE.md - Quick API cheat sheet
- AGENT_INTEGRATION_GUIDE.md - How agents integrate with MCP server
- ARCHITECTURE_EXPLANATION.md - Server architecture details
Client SDK
The project includes a Python client SDK in the client/ directory:
# Install client dependencies
pip install -r client/requirements.txt
# Use in your code
from client import MCPClient
See CLIENT_USAGE_GUIDE.md for complete examples.
Examples
examples/simple_client_example.py- Basic client usageexamples/langchain_integration_example.py- LangChain agent integration
API Endpoints
GET /mcp/manifest- Discover server capabilities and toolsPOST /mcp/execute- Execute a toolGET /mcp/stream/{call_id}- Stream resultsPOST /mcp/cancel/{call_id}- Cancel a callGET /healthz- Health checkGET /readyz- Readiness check
Configuration
Environment variables:
OPENAI_API_KEY- OpenAI API key (required)MCP_SERVER_TOKEN- Bearer token for authentication (default: "super-secret-token")SERVER_HOST- Server host (default: "0.0.0.0")SERVER_PORT- Server port (default: 8000)
License
[Add your license here]
Support
For issues and questions, see the documentation files or create an issue.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。