Megaraptor MCP
Enables AI assistants to interact with the Velociraptor digital forensics and incident response platform for endpoint management and threat hunting. It supports artifact collection, VQL query execution, and automated forensic investigation workflows.
README
Megaraptor MCP
A Model Context Protocol (MCP) server that provides AI assistants with access to Velociraptor - the powerful digital forensics and incident response (DFIR) platform.
Overview
Megaraptor MCP enables AI assistants like Claude to interact with Velociraptor servers for:
- Endpoint Management: Search, interrogate, and manage Velociraptor clients
- Artifact Collection: Schedule forensic artifact collection on endpoints
- Threat Hunting: Create and manage hunts across multiple endpoints
- VQL Queries: Execute arbitrary Velociraptor Query Language queries
- Incident Response: Pre-built DFIR workflow prompts for common scenarios
- Deployment Automation: Deploy Velociraptor servers and agents across infrastructure (Docker, binary, cloud, GPO, SSH, WinRM, Ansible)
Features
MCP Tools (33 tools)
Core DFIR Tools (15 tools)
| Category | Tool | Description |
|---|---|---|
| Clients | list_clients |
Search and list Velociraptor endpoints |
get_client_info |
Get detailed information about a client | |
label_client |
Add/remove labels from clients | |
quarantine_client |
Quarantine or release endpoints | |
| Artifacts | list_artifacts |
List available Velociraptor artifacts |
get_artifact |
Get full artifact definition | |
collect_artifact |
Schedule artifact collection on a client | |
| Hunts | create_hunt |
Create a mass collection campaign |
list_hunts |
List existing hunts | |
get_hunt_results |
Retrieve results from a hunt | |
modify_hunt |
Start, pause, stop, or archive hunts | |
| Flows | list_flows |
List collection flows for a client |
get_flow_results |
Get results from a collection | |
get_flow_status |
Check collection status | |
cancel_flow |
Cancel a running collection | |
| VQL | run_vql |
Execute arbitrary VQL queries |
vql_help |
Get help on VQL syntax and plugins |
Deployment Tools (18 tools)
| Category | Tool | Description |
|---|---|---|
| Server Deployment | deploy_server_binary |
Deploy Velociraptor server as standalone binary |
deploy_server_docker |
Deploy Velociraptor server using Docker | |
deploy_server_cloud |
Deploy Velociraptor server to AWS/Azure cloud | |
generate_server_config |
Generate server configuration with certificates | |
| Agent Deployment | deploy_agent_gpo |
Generate GPO deployment package for Windows |
deploy_agent_winrm |
Deploy agents via WinRM to Windows endpoints | |
deploy_agent_ssh |
Deploy agents via SSH to Linux/macOS endpoints | |
deploy_agent_ansible |
Generate Ansible playbook for agent deployment | |
build_offline_collector |
Build standalone offline collector | |
generate_client_config |
Generate client configuration file | |
| Deployment Management | list_deployments |
List tracked deployment operations |
get_deployment_status |
Get detailed status of a deployment | |
verify_deployment |
Verify deployment health and connectivity | |
rollback_deployment |
Rollback a failed deployment | |
| Credentials | store_credential |
Securely store deployment credentials |
list_credentials |
List stored credential aliases | |
delete_credential |
Remove stored credentials | |
| Utilities | download_velociraptor |
Download Velociraptor binary for platform |
MCP Resources
Browse Velociraptor data through standardized URIs:
velociraptor://clients- Browse connected endpointsvelociraptor://clients/{client_id}- View specific client detailsvelociraptor://hunts- Browse hunt campaignsvelociraptor://hunts/{hunt_id}- View specific hunt detailsvelociraptor://artifacts- Browse available artifactsvelociraptor://server-info- View server informationvelociraptor://deployments- Browse deployment operations and status
MCP Prompts (8 prompts)
Pre-built DFIR and deployment workflow prompts:
| Prompt | Category | Description |
|---|---|---|
investigate_endpoint |
DFIR | Comprehensive endpoint investigation workflow |
threat_hunt |
DFIR | Create and execute threat hunting campaigns |
triage_incident |
DFIR | Rapid incident triage and scoping |
malware_analysis |
DFIR | Analyze suspicious files or processes |
lateral_movement |
DFIR | Detect lateral movement indicators |
deploy_velociraptor |
Deployment | Interactive Velociraptor deployment wizard |
scale_deployment |
Deployment | Plan enterprise-scale agent rollout |
troubleshoot_deployment |
Deployment | Diagnose and fix deployment issues |
Installation
Prerequisites
- Python 3.10 or higher
- A running Velociraptor server with API access enabled
- API client credentials (see Configuration)
Install from source
git clone https://github.com/yourusername/megaraptor-mcp.git
cd megaraptor-mcp
# Core DFIR functionality only
pip install -e .
# With deployment features
pip install -e ".[deployment]"
# With cloud deployment (AWS/Azure)
pip install -e ".[cloud]"
# All features
pip install -e ".[all]"
Optional Dependencies
| Extra | Features | Packages |
|---|---|---|
deployment |
Agent/server deployment | paramiko, pywinrm, cryptography, jinja2 |
cloud |
Cloud deployment | boto3, azure-mgmt-compute |
all |
All features | All of the above |
Install dependencies manually
# Core only
pip install mcp pyvelociraptor pyyaml grpcio
# For deployment features
pip install paramiko pywinrm cryptography jinja2
# For cloud deployment
pip install boto3 azure-mgmt-compute azure-identity
Configuration
Megaraptor MCP supports two authentication methods:
Option 1: Config File (Recommended)
- Generate an API client config on your Velociraptor server:
velociraptor --config server.config.yaml config api_client \
--name mcp-client \
--role reader,investigator \
api_client.yaml
- Set the environment variable:
export VELOCIRAPTOR_CONFIG_PATH=/path/to/api_client.yaml
Option 2: Environment Variables
Set individual configuration values:
export VELOCIRAPTOR_API_URL=https://velociraptor.example.com:8001
export VELOCIRAPTOR_CLIENT_CERT=/path/to/client.crt # or PEM content
export VELOCIRAPTOR_CLIENT_KEY=/path/to/client.key # or PEM content
export VELOCIRAPTOR_CA_CERT=/path/to/ca.crt # or PEM content
API Roles
Assign appropriate roles to your API client based on required capabilities:
| Role | Capabilities |
|---|---|
reader |
Read clients, artifacts, hunts, flows |
investigator |
Above + collect artifacts, create hunts |
administrator |
Full access (use with caution) |
Usage
Running the Server
# Using the installed command
megaraptor-mcp
# Or as a Python module
python -m megaraptor_mcp
Claude Desktop Integration
Add to your Claude Desktop configuration (claude_desktop_config.json):
{
"mcpServers": {
"velociraptor": {
"command": "python",
"args": ["-m", "megaraptor_mcp"],
"env": {
"VELOCIRAPTOR_CONFIG_PATH": "/path/to/api_client.yaml"
}
}
}
}
Example Interactions
List connected endpoints:
Use the list_clients tool to show all Windows endpoints
Investigate an endpoint:
Use the investigate_endpoint prompt for client C.1234567890abcdef
Create a threat hunt:
Create a hunt for the file hash a1b2c3d4e5f6... across all endpoints
Run custom VQL:
Run this VQL query: SELECT * FROM pslist() WHERE Name =~ 'suspicious'
VQL Reference
VQL (Velociraptor Query Language) is the core query language. Common patterns:
-- List all clients
SELECT * FROM clients()
-- Search for clients by hostname
SELECT * FROM clients(search='host:workstation')
-- Get running processes from collected data
SELECT * FROM source(client_id='C.xxx', flow_id='F.xxx')
-- Create a hunt
SELECT hunt(artifacts='Windows.System.Pslist', description='Process audit')
FROM scope()
For complete VQL reference, see: https://docs.velociraptor.app/vql_reference/
Deployment Features
Megaraptor MCP includes comprehensive deployment automation for Velociraptor infrastructure.
Server Deployment
Deploy Velociraptor servers using multiple methods:
| Method | Use Case | Command |
|---|---|---|
| Binary | On-premise, direct installation | deploy_server_binary |
| Docker | Container environments, quick testing | deploy_server_docker |
| Cloud | AWS/Azure managed deployments | deploy_server_cloud |
Example: Deploy Docker server
Deploy a Velociraptor server using Docker on server.example.com with SSH credentials "prod-server"
Agent Deployment
Multiple agent deployment methods for different environments:
| Method | Target | Best For |
|---|---|---|
| GPO | Windows (Active Directory) | Enterprise Windows environments |
| WinRM | Windows (remote) | Windows without AD, smaller deployments |
| SSH | Linux/macOS | Unix-like systems |
| Ansible | Multi-platform | Large-scale infrastructure automation |
| Offline Collector | Air-gapped | Isolated networks, forensic collection |
Example: Deploy agents via GPO
Generate a GPO deployment package for 500 Windows endpoints using the enterprise profile
Example: Deploy via Ansible
Create an Ansible playbook to deploy Velociraptor agents to all Linux servers in inventory.yml
Deployment Profiles
Pre-configured deployment profiles for different scenarios:
| Profile | Use Case | Characteristics |
|---|---|---|
| rapid | Quick testing, POC | Minimal config, self-signed certs |
| standard | Production single-site | Proper certificates, standard hardening |
| enterprise | Large-scale multi-site | HA config, advanced monitoring, compliance |
Credential Management
Securely store deployment credentials:
Store SSH credentials for prod-servers with username admin and key file ~/.ssh/prod_key
Credentials are encrypted at rest using AES-256-GCM with a locally-generated key.
Offline Collectors
Build standalone collectors for air-gapped environments:
Build an offline collector for Windows that collects browser history and network connections
Collectors include embedded configuration and can run without network connectivity.
Project Structure
megaraptor-mcp/
├── pyproject.toml # Project configuration
├── README.md # This file
├── src/
│ └── megaraptor_mcp/
│ ├── __init__.py # Package initialization
│ ├── __main__.py # Module entry point
│ ├── server.py # MCP server main entry
│ ├── client.py # Velociraptor API wrapper
│ ├── config.py # Configuration handling
│ ├── tools/ # MCP tool implementations
│ │ ├── clients.py # Client management tools
│ │ ├── artifacts.py # Artifact tools
│ │ ├── hunts.py # Hunt management tools
│ │ ├── flows.py # Flow/collection tools
│ │ └── vql.py # VQL query tools
│ ├── resources/ # MCP resource implementations
│ │ └── resources.py
│ ├── prompts/ # MCP prompt implementations
│ │ └── prompts.py
│ └── deployment/ # Deployment automation
│ ├── __init__.py # Deployment module init
│ ├── tools.py # Deployment tool implementations
│ ├── server/ # Server deployment
│ │ ├── __init__.py
│ │ ├── binary.py # Binary deployment
│ │ ├── docker.py # Docker deployment
│ │ └── cloud.py # Cloud deployment (AWS/Azure)
│ ├── agent/ # Agent deployment
│ │ ├── __init__.py
│ │ ├── gpo.py # GPO package generation
│ │ ├── winrm.py # WinRM deployment
│ │ ├── ssh.py # SSH deployment
│ │ ├── ansible.py # Ansible playbook generation
│ │ └── offline.py # Offline collector builder
│ ├── credentials.py # Secure credential storage
│ ├── config_generator.py # Config file generation
│ └── profiles.py # Deployment profiles (rapid/standard/enterprise)
└── tests/ # Test suite
├── test_config.py
└── test_deployment.py
Security Considerations
API Security
- API Credentials: Store API client credentials securely. The config file contains private keys.
- Principle of Least Privilege: Use the minimum required roles for API clients.
- Network Security: Ensure API connections are only accessible from trusted networks.
- Audit Logging: Velociraptor logs all API actions. Review logs regularly.
- Quarantine Caution: The quarantine tool can isolate endpoints from the network.
Deployment Security
- Credential Encryption: Deployment credentials are encrypted at rest using AES-256-GCM. The
.keyfileis generated locally and should be protected. - Generated Configs: Server and client configurations contain CA certificates and private keys. These are excluded from git via
.gitignore. - Ansible Playbooks: Generated playbooks may contain CA certificates. Store securely and limit access.
- Cloud Templates: CloudFormation and ARM templates may contain sensitive parameters. Review before committing.
- SSH/WinRM: Use key-based authentication where possible. Avoid storing passwords in plain text.
- Offline Collectors: Built collectors contain embedded configuration. Protect as you would agent binaries.
- GPO Packages: MSI packages contain embedded configuration. Control access to distribution share.
Development
Running Tests
pip install -e ".[dev]"
pytest
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests
- Submit a pull request
License
MIT License - see LICENSE file for details.
Resources
Acknowledgments
- The Velociraptor team at Velocidex for creating an amazing DFIR platform
- Anthropic for the Model Context Protocol specification
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。