Meilisearch MCP Server

Meilisearch MCP Server

Enables AI assistants to interact with Meilisearch through a standardized interface, supporting index and document management, search capabilities, settings configuration, task monitoring, and experimental vector search.

Category
访问服务器

README

Meilisearch MCP Server

smithery badge

A Model Context Protocol (MCP) server implementation for Meilisearch, enabling AI assistants to interact with Meilisearch through a standardized interface.

Features

  • Index Management: Create, update, and delete indexes
  • Document Management: Add, update, and delete documents
  • Search Capabilities: Perform searches with various parameters and filters
  • Settings Management: Configure index settings
  • Task Management: Monitor and manage asynchronous tasks
  • System Operations: Health checks, version information, and statistics
  • Vector Search: Experimental vector search capabilities

Installation

Installing via Smithery

To install Meilisearch MCP Server for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @devlimelabs/meilisearch-ts-mcp --client claude

Manual Installation

  1. Clone the repository:

    git clone https://github.com/devlimelabs/meilisearch-ts-mcp.git
    cd meilisearch-ts-mcp
    
  2. Install dependencies:

    npm install
    
  3. Create a .env file based on the example:

    cp .env.example .env
    
  4. Edit the .env file to configure your Meilisearch connection.

Docker Setup

The Meilisearch MCP Server can be run in a Docker container for easier deployment and isolation.

Using Docker Compose

The easiest way to get started with Docker is to use Docker Compose:

# Start the Meilisearch MCP Server
docker-compose up -d

# View logs
docker-compose logs -f

# Stop the server
docker-compose down

Building and Running the Docker Image Manually

You can also build and run the Docker image manually:

# Build the Docker image
docker build -t meilisearch-ts-mcp .

# Run the container
docker run -p 3000:3000 --env-file .env meilisearch-ts-mcp

Development Setup

For developers who want to contribute to the Meilisearch MCP Server, we provide a convenient setup script:

# Clone the repository
git clone https://github.com/devlimelabs-ts-mcp/meilisearch-ts-mcp.git
cd meilisearch-ts-mcp

# Run the development setup script
./scripts/setup-dev.sh

The setup script will:

  1. Create a .env file from .env.example if it doesn't exist
  2. Install dependencies
  3. Build the project
  4. Run tests to ensure everything is working correctly

After running the setup script, you can start the server in development mode:

npm run dev

Usage

Building the Project

npm run build

Running the Server

npm start

Development Mode

npm run dev

Claude Desktop Integration

The Meilisearch MCP Server can be integrated with Claude for Desktop, allowing you to interact with your Meilisearch instance directly through Claude.

Automated Setup

We provide a setup script that automatically configures Claude for Desktop to work with the Meilisearch MCP Server:

# First build the project
npm run build

# Then run the setup script
node scripts/claude-desktop-setup.js

The script will:

  1. Detect your operating system and locate the Claude for Desktop configuration file
  2. Read your Meilisearch configuration from the .env file
  3. Generate the necessary configuration for Claude for Desktop
  4. Provide instructions for updating your Claude for Desktop configuration

Manual Setup

If you prefer to manually configure Claude for Desktop:

  1. Locate your Claude for Desktop configuration file:

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%\Claude\claude_desktop_config.json
    • Linux: ~/.config/Claude/claude_desktop_config.json
  2. Add the following configuration (adjust paths as needed):

{
  "mcpServers": {
    "meilisearch": {
      "command": "node",
      "args": ["/path/to/meilisearch-ts-mcp/dist/index.js"],
      "env": {
        "MEILISEARCH_HOST": "http://localhost:7700",
        "MEILISEARCH_API_KEY": "your-api-key"
      }
    }
  }
}
  1. Restart Claude for Desktop to apply the changes.

  2. In Claude, type: "I want to use the Meilisearch MCP server" to activate the integration.

Cursor Integration

The Meilisearch MCP Server can also be integrated with Cursor, an AI-powered code editor.

Setting Up MCP in Cursor

  1. Install and set up the Meilisearch MCP Server:

    git clone https://github.com/devlimelabs/meilisearch-ts-mcp.git
    cd meilisearch-ts-mcp
    npm install
    npm run build
    
  2. Start the MCP server:

    npm start
    
  3. In Cursor, open the Command Palette (Cmd/Ctrl+Shift+P) and search for "MCP: Connect to MCP Server".

  4. Select "Connect to a local MCP server" and enter the following details:

    • Name: Meilisearch
    • Command: node
    • Arguments: /absolute/path/to/meilisearch-ts-mcp/dist/index.js
    • Environment Variables:
      MEILISEARCH_HOST=http://localhost:7700
      MEILISEARCH_API_KEY=your-api-key
      
  5. Click "Connect" to establish the connection.

  6. You can now interact with your Meilisearch instance through Cursor by typing commands like "Search my Meilisearch index for documents about..."

Available Tools

The Meilisearch MCP Server provides the following tools:

Index Tools

  • create-index: Create a new index
  • get-index: Get information about an index
  • list-indexes: List all indexes
  • update-index: Update an index
  • delete-index: Delete an index

Document Tools

  • add-documents: Add documents to an index
  • get-document: Get a document by ID
  • get-documents: Get multiple documents
  • update-documents: Update documents
  • delete-document: Delete a document by ID
  • delete-documents: Delete multiple documents
  • delete-all-documents: Delete all documents in an index

Search Tools

  • search: Search for documents
  • multi-search: Perform multiple searches in a single request

Settings Tools

  • get-settings: Get index settings
  • update-settings: Update index settings
  • reset-settings: Reset index settings to default
  • Various specific settings tools (synonyms, stop words, ranking rules, etc.)

Task Tools

  • list-tasks: List tasks with optional filtering
  • get-task: Get information about a specific task
  • cancel-tasks: Cancel tasks based on provided filters
  • wait-for-task: Wait for a specific task to complete

System Tools

  • health: Check the health status of the Meilisearch server
  • version: Get version information
  • info: Get system information
  • stats: Get statistics about indexes

Vector Tools (Experimental)

  • enable-vector-search: Enable vector search
  • get-experimental-features: Get experimental features status
  • update-embedders: Configure embedders
  • get-embedders: Get embedders configuration
  • reset-embedders: Reset embedders configuration
  • vector-search: Perform vector search

License

MIT

推荐服务器

Baidu Map

Baidu Map

百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。

官方
精选
JavaScript
Playwright MCP Server

Playwright MCP Server

一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。

官方
精选
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。

官方
精选
本地
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

官方
精选
本地
TypeScript
VeyraX

VeyraX

一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。

官方
精选
本地
graphlit-mcp-server

graphlit-mcp-server

模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。

官方
精选
TypeScript
Kagi MCP Server

Kagi MCP Server

一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

官方
精选
Python
e2b-mcp-server

e2b-mcp-server

使用 MCP 通过 e2b 运行代码。

官方
精选
Neon MCP Server

Neon MCP Server

用于与 Neon 管理 API 和数据库交互的 MCP 服务器

官方
精选
Exa MCP Server

Exa MCP Server

模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。

官方
精选