Mem0 MCP Server
Provides long-term memory capabilities for MCP clients by wrapping the Mem0 API, enabling semantic search, storage, retrieval, and management of conversation memories across users and agents.
README
Mem0 MCP Server
mem0-mcp-server wraps the official Mem0 Memory API as a Model Context Protocol (MCP) server so any MCP-compatible client (Claude Desktop, Cursor, custom agents) can add, search, update, and delete long-term memories.
Tools
The server exposes the following tools to your LLM:
| Tool | Description |
|---|---|
add_memory |
Save text or conversation history (or explicit message objects) for a user/agent. |
search_memories |
Semantic search across existing memories (filters + limit supported). |
get_memories |
List memories with structured filters and pagination. |
get_memory |
Retrieve one memory by its memory_id. |
update_memory |
Overwrite a memory’s text once the user confirms the memory_id. |
delete_memory |
Delete a single memory by memory_id. |
delete_all_memories |
Bulk delete all memories in the confirmed scope (user/agent/app/run). |
delete_entities |
Delete a user/agent/app/run entity (and its memories). |
list_entities |
Enumerate users/agents/apps/runs stored in Mem0. |
All responses are JSON strings returned directly from the Mem0 API.
Ways to Run
You can run this server in three modes depending on your setup:
- Local Stdio (Recommended): Best for Claude Desktop, Cursor, or local development. No server port management needed.
- Smithery: Best for deploying as a hosted HTTP endpoint or using the Smithery platform.
- Docker: Best for containerized deployments where you need an HTTP endpoint.
How to Connect
Claude Desktop & Cursor (Stdio)
The easiest way to use Mem0 is by letting uvx handle the installation. Add this configuration to your claude_desktop_config.json or Cursor MCP settings:
{
"mcpServers": {
"mem0": {
"command": "uvx",
"args": ["mem0-mcp-server"],
"env": {
"MEM0_API_KEY": "sk_mem0_...",
"MEM0_DEFAULT_USER_ID": "your-handle"
}
}
}
}
Manual Installation (CLI)
If you prefer installing the package yourself:
pip install mem0-mcp-server
Then run it directly:
export MEM0_API_KEY="sk_mem0_..."
mem0-mcp-server
Agent Example
This repository includes a standalone agent (powered by Pydantic AI) to test the server interactively.
# Clone repo & install deps
git clone https://github.com/mem0-ai/mem0-mcp-server.git
cd mem0-mcp-server
pip install -e ".[smithery]"
# Run the agent REPL
export MEM0_API_KEY="sk_mem0_..."
export OPENAI_API_KEY="sk-openai-..."
python example/pydantic_ai_repl.py
This launches "Mem0Guide". Try prompts like "search memories for favorite food" to test your API key and memory storage.
Configuration
Environment Variables
MEM0_API_KEY(required) – Mem0 platform API key.MEM0_DEFAULT_USER_ID(optional) – defaultuser_idinjected into filters and write requests (defaults tomem0-mcp).MEM0_MCP_AGENT_MODEL(optional) – default LLM for the bundled agent example.
Config Files
For advanced usage (like switching the agent example to use Docker), this repo includes standard MCP config files in the example/ directory:
example/config.json: Local Stdio (default)example/docker-config.json: Docker HTTP
Switch configurations for the agent REPL by setting MEM0_MCP_CONFIG_PATH.
Detailed Setup Guides
<details> <summary><strong>Click to expand: Smithery, Docker, and Troubleshooting</strong></summary>
1. Smithery HTTP
To run the HTTP transport with Smithery:
pip install -e ".[smithery]"(orpip install "mem0-mcp-server[smithery]").- Ensure
MEM0_API_KEY(and optionalMEM0_DEFAULT_USER_ID) are exported. uv run smithery devfor a local endpoint (http://127.0.0.1:8081/mcp).- Optional:
uv run smithery playgroundto open an ngrok tunnel + Smithery web UI. - Testing: Create a config copying
example/config.jsonbut changing the entry to{ "type": "http", "url": "http://127.0.0.1:8081/mcp" }, then pointMEM0_MCP_CONFIG_PATHto it before running the agent REPL. - Hosted deploy: Push to GitHub, connect at smithery.ai, click Deploy.
2. Docker HTTP
To containerize the server:
- Build the image:
docker build -t mem0-mcp-server . - Run the container (ensure env vars are passed):
docker run --rm -e MEM0_API_KEY=sk_mem0_... -p 8081:8081 mem0-mcp-server - Connect clients using
example/docker-config.json:export MEM0_MCP_CONFIG_PATH="$PWD/example/docker-config.json" python example/pydantic_ai_repl.py
Troubleshooting Docker:
- The container must be running before HTTP clients connect.
- Ensure
MEM0_API_KEYis passed via-e. - If clients can't connect, check that port 8081 is forwarded correctly (
-p 8081:8081) and that the config URL is reachable.
3. FAQ / Troubleshooting
RuntimeWarning: 'mem0_mcp_server.server' found in sys.modules…: Harmless warning when running the Pydantic AI REPL.session_config not found in request scope: Expected when running outside Smithery; the server falls back to environment variables.- Smithery CLI "server reference not found": Ensure
[tool.smithery] server = "mem0_mcp_server.server:create_server"is present inpyproject.toml.
</details>
Development
uv sync --python 3.11 # optional, installs dev extras and lockfile
uv run --from . mem0-mcp-server # run local checkout via uvx
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。