
Memento
A local, fully-offline MCP memory server that enables persistent storage and retrieval of information using SQLite with both keyword and semantic vector search capabilities.
README
Memento
Some memories are best persisted.
A local, fully-offline MCP memory server using SQLite + FTS5 + sqlite-vec
with embedding support via @xenova/transformers.
Features
- Fast keyword search (FTS5)
- Semantic vector search (sqlite-vec, 1024d)
- Offline embedding model (
bge-m3
) - Structured graph of
entities
,observations
, andrelations
- Easy integration with Claude Desktop (via MCP)
Prerequisite: sqlite3
CLI
Most macOS and Linux distros ship sqlite3
out of the box, but double-check that it’s there and new enough (≥ 3.38 for proper FTS5).
sqlite3 --version # should print a version string, e.g. 3.46.0 2024-05-10
If you see “command not found” (or your version is older than 3.38), install the CLI:
Platform | Install command |
---|---|
macOS (Homebrew) | brew install sqlite |
Debian / Ubuntu | sudo apt update && sudo apt install sqlite3 |
Installation
npm install -g @iachilles/memento
Make sure the platform-specific sqlite-vec
subpackage is installed automatically (e.g. sqlite-vec-darwin-x64
). You can verify or force install via:
npm i sqlite-vec
Usage
MEMORY_DB_PATH="/Your/Path/To/memory.db" memento
## Starting @iachilles/memento v0.3.3...
## @iachilles/memento v0.3.3 is ready!
Claude Desktop:
{
"mcpServers": {
"memory": {
"description": "Custom memory backed by SQLite + vec + FTS5",
"command": "npx",
"args": [
"-y",
"memento"
],
"env": {
"MEMORY_DB_PATH": "/Path/To/Your/memory.db"
},
"options": {
"autoStart": true,
"restartOnCrash": true
}
}
}
}
Optional:
Use SQLITE_VEC_PATH=/full/path/to/vec0.dylib
if automatic detection fails.
API Overview
This server exposes the following MCP tools:
create_entities
create_relations
add_observations
delete_entities
delete_relations
delete_observations
read_graph
search_nodes
(mode:keyword
,semantic
)open_nodes
An example of an instruction set that an LLM should know for effective memory handling.
## Memory and Interaction Protocol for LLMs
This assistant uses persistent memory.
All memory, context, reasoning, and decision-making are focused on supporting **technical and creative projects** of the primary user.
### 1. User Identification
* Assume interaction is with a **single primary user** unless explicitly specified otherwise.
* No user switching is expected by default.
### 2. Memory Retrieval
* At the start of each session, retrieve relevant information from memory by saying only:
`Remembering...`
* "Memory" refers to the assistant’s internal knowledge graph built from prior interactions.
### 3. Memory Focus Areas
During interaction, prioritize capturing and updating memory related to the user’s technical and creative work, including:
#### a) **Project Architecture**
* Project names and goals
* Key modules, services, and interactions
* Technologies, languages, and tools involved
#### b) **Decisions and Rationale**
* Major design choices and justifications
* Rejected approaches and reasons
* Known trade-offs and open questions
#### c) **Code Practices**
* Coding style and patterns preferred by the user
* Naming conventions, file structure, formatting
* Practices for error handling, testing, logging, etc.
#### d) **Workflow Milestones**
* Tasks completed, bugs fixed, optimizations made
* Current phase and next steps
* Integration status with other components
#### e) **Process Preferences**
* Collaboration style (e.g., iterative, detail-oriented)
* Preferred formats and workflows
* Communication tone and instruction parsing approach
#### f) **Personal Context (secondary)**
* In addition to technical details, the assistant may store helpful contextual cues (e.g., time zone, preferred language, productivity patterns) to improve collaboration and anticipation of needs.
### 4. Memory Updates
When new information emerges during interaction:
* **Create entities** for recurring elements (e.g., projects, components, decisions)
* **Link entities** using contextual relationships
* **Store observations** as structured facts for future reasoning
### 5. Memory Initiative
The assistant is encouraged to:
* **Proactively suggest** storing information that appears strategically important
* **Identify patterns** or frequent mentions that indicate significance
* **Capture relevant insights** even if outside predefined categories, if useful for future support or automation
### 6. Context Reinforcement
When the user refers to:
* a previously described concept
* a tool or method in use
* a past decision or event
...the assistant should **automatically retrieve and apply memory** before responding.
### Recommended Entity Naming Structure
To keep memory organized and searchable, use a consistent naming convention for entities:
* `Assistant` – for assistant metadata or behavior
* `User` – stores preferences, context, habits, language use
* `Project_[NAME]` – separate entity per project, e.g., `Project_MY_PROJECT`
* `Session_[DATE]` – working session summaries or notes, e.g., `Session_2025-06-07`
* `Decision_[TOPIC]` – key decisions, e.g., `Decision_PlaylistArchitecture`
* `Feature_[NAME]` – information about specific features, e.g., `Feature_RotationRules`
* `Bug_[ID_OR_NAME]` – problems and resolution context, e.g., `Bug_DuplicateTracks`
#### How to determine the project name
Use the name of the working directory, converted to **capitalized SNAKE\_CASE**.
For example:
* `/Users/example/my_project` → `Project_MY_PROJECT`
This naming convention ensures clarity and consistency across sessions and contexts.
This is just an example of instructions, you can define your own rules for the model.
Embedding Model
This project uses @xenova/transformers, with a quantized version of bge-m3
, running fully offline in Node.js.
License
MIT
推荐服务器

Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。

VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。

e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。