Memory-MCP
Provides persistent memory for AI agents using hybrid search (vector embeddings + BM25) with neural reranking, enabling storage and retrieval of insights, debugging solutions, and patterns across coding sessions.
README
Memory-MCP Server
Version: 3.7.0
Status: Production-Ready
License: MIT
A state-of-the-art persistent memory system for AI agents using hybrid search (vector embeddings + BM25 FTS), neural reranking, and optional LLM-driven automated memory extraction.
Table of Contents
- Overview
- Key Features
- Architecture
- Quick Start
- Installation
- Configuration
- MCP Tools Reference
- Hook System (Auto-Save)
- Search Technology
- Memory Lifecycle
- Usage Examples
- Testing
- Troubleshooting
- API Reference
- FAQ
Overview
Memory-MCP is a production-grade persistent memory system for AI coding agents (Claude Code, Cursor, Windsurf, custom agents, etc.) that stores and retrieves valuable insights across sessions. It combines semantic vector search with keyword matching (BM25) for optimal retrieval accuracy.
What Problems Does This Solve?
- Lost Knowledge: Valuable insights from debugging sessions, configurations, and patterns are forgotten between sessions
- Context Switching: Hard to recall what worked in previous projects
- Duplicate Effort: Solving the same problems repeatedly
- Scattered Notes: Knowledge lives in different formats across different projects
How It Works
Save Memory → Embedding Generation → Duplicate Check → Store in LanceDB
↓
Recall Memory → Hybrid Search (Vector + BM25) → RRF Fusion → Neural Rerank → Results
- Intelligent Storage: Stores insights with 1024-dimensional semantic embeddings
- Hybrid Retrieval: Searches using both semantic similarity AND keyword matching
- Neural Reranking: CrossEncoder re-ranks results for maximum relevance
- Optional Auto-Save: Hook analyzes agent actions and extracts memories automatically
Key Features
| Feature | Description |
|---|---|
| 7 MCP Tools | Full CRUD operations + stats + health monitoring |
| Hybrid Search | Vector (70%) + BM25 FTS (30%) with RRF fusion |
| Neural Reranking | CrossEncoder (mxbai-reranker-base-v2, BEIR SOTA) |
| Local Embeddings | Ollama support for privacy and speed |
| GPU Acceleration | Works with any CUDA-capable GPU |
| Duplicate Prevention | 90% similarity threshold prevents redundant saves |
| TTL Management | 365-day expiry with automatic cleanup |
| Fallback Chain | Ollama → Google → Hash (always available) |
| Project Scoping | Search across all projects or project-specific |
| Auto-Save Hook | Optional PostToolUse hook for automatic extraction |
Architecture
┌─────────────────────────────────────────────────────────────────┐
│ MEMORY-MCP v3.5.0 │
└─────────────────────────────────────────────────────────────────┘
Agent/User
│
├──────────────────────────────────────┐
│ │
┌───▼────┐ ┌──────▼───────┐
│ Manual │ │ Auto-Save │
│ MCP │ │ Hook │
│ Tools │ │ (Optional) │
└───┬────┘ └──────┬───────┘
│ │
│ ┌───────────────────────▼──────────┐
│ │ LLM Judge (Gemini Flash) │
│ │ - Determines worthiness │
│ │ - Extracts category & tags │
│ └───────────────────────┬──────────┘
│ │
└──────────────┬───────────────────────┘
│
┌──────────▼──────────┐
│ Embedding Generation │
│ Primary: Ollama │
│ Fallback: Google │
│ Last: Hash-based │
└──────────┬──────────┘
│
┌──────────▼──────────┐
│ Duplicate Check │
│ (90% similarity) │
└──────────┬──────────┘
│
┌──────────▼──────────┐
│ LanceDB │
│ - 1024-dim vectors │
│ - BM25 FTS index │
│ - TTL (365 days) │
└──────────┬──────────┘
│
┌──────────▼──────────┐
│ Query Pipeline │
│ 1. Vector Search │
│ 2. FTS Search │
│ 3. RRF Fusion │
│ 4. Neural Rerank │
│ 5. TTL Filter │
└─────────────────────┘
Quick Start
# Clone and setup
git clone https://github.com/wb200/memory-mcp.git
cd memory-mcp
uv sync
# Configure MCP client (add to your mcp.json)
{
"mcpServers": {
"memory": {
"command": "/path/to/memory-mcp/.venv/bin/python",
"args": ["/path/to/memory-mcp/server.py"],
"env": {
"GOOGLE_API_KEY": "your-api-key"
}
}
}
}
# Test it works
memory_health() # Should show system status
memory_save(content="Test memory", category="DEBUG")
memory_recall(query="test")
Installation
Prerequisites
- Python 3.11 or higher
- uv package manager (recommended)
- Ollama (optional, for local embeddings) OR Google API key
Step 1: Clone and Setup
git clone https://github.com/wb200/memory-mcp.git
cd memory-mcp
# Using uv (recommended)
uv sync
Step 2: Install Ollama (Recommended for Privacy)
# Install Ollama
curl -fsSL https://ollama.ai/install.sh | sh
# Pull the embedding model
ollama pull qwen3-embedding:0.6b
# Start Ollama server
ollama serve
With GPU (systemd service):
# /etc/systemd/system/ollama.service
[Unit]
Description=Ollama LLM Service
After=network-online.target
[Service]
ExecStart=/usr/local/bin/ollama serve
Environment="CUDA_VISIBLE_DEVICES=0"
Environment="OLLAMA_NUM_GPU=all"
Restart=always
[Install]
WantedBy=multi-user.target
sudo systemctl enable --now ollama
Step 3: Configure MCP Client
Add to your MCP configuration file:
Claude Code / Factory (~/.factory/mcp.json):
{
"mcpServers": {
"memory": {
"type": "stdio",
"command": "/path/to/memory-mcp/.venv/bin/python",
"args": ["/path/to/memory-mcp/server.py"],
"env": {
"EMBEDDING_PROVIDER": "ollama",
"EMBEDDING_MODEL": "qwen3-embedding:0.6b",
"EMBEDDING_DIM": "1024",
"OLLAMA_BASE_URL": "http://localhost:11434",
"GOOGLE_API_KEY": "${GOOGLE_API_KEY}",
"LANCEDB_MEMORY_PATH": "/home/youruser/.memory-mcp/lancedb-memory"
}
}
}
}
Cursor (~/.cursor/mcp.json):
{
"mcpServers": {
"memory": {
"command": "/path/to/memory-mcp/.venv/bin/python",
"args": ["/path/to/memory-mcp/server.py"],
"env": {
"GOOGLE_API_KEY": "your-api-key"
}
}
}
}
Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
LANCEDB_MEMORY_PATH |
~/.memory-mcp/lancedb-memory |
Database location |
EMBEDDING_PROVIDER |
ollama |
ollama or google |
EMBEDDING_MODEL |
qwen3-embedding:0.6b |
Embedding model name |
EMBEDDING_DIM |
1024 |
Embedding dimensions |
OLLAMA_BASE_URL |
http://localhost:11434 |
Ollama API endpoint |
GOOGLE_API_KEY |
- | Google Gemini API key |
Server Configuration
These are set in the Config class in server.py:
| Setting | Default | Description |
|---|---|---|
llm_model |
gemini-3-flash-preview |
LLM for summarization |
ttl_days |
365 |
Memory time-to-live |
dedup_threshold |
0.90 |
Duplicate similarity threshold |
fts_weight |
0.3 |
FTS weight in RRF fusion |
default_limit |
5 |
Default results per query |
max_limit |
50 |
Maximum results per query |
MCP Tools Reference
Overview
| Tool | Description | Read-Only |
|---|---|---|
memory_save |
Save a memory with semantic embedding | No |
memory_recall |
Search across ALL projects | Yes |
memory_recall_project |
Search in CURRENT project only | Yes |
memory_delete |
Delete a memory by ID | No |
memory_update |
Update an existing memory | No |
memory_stats |
Get statistics by category/project | Yes |
memory_health |
Get system health status | Yes |
memory_save
Save a new memory with automatic embedding and duplicate detection.
Parameters:
content(required): Memory contentcategory: One ofPATTERN,CONFIG,DEBUG,PERF,PREF,INSIGHT,API,AGENTtags: List of tags for categorizationsummarize: Use LLM to summarize verbose content
Example:
memory_save(
content="[DEBUG] - RuntimeError: CUDA out of memory solved with gradient_checkpointing=True. Context: Fine-tuning transformer. Rationale: Trades compute for memory.",
category="DEBUG",
tags=["pytorch", "cuda", "memory"]
)
# Response: Saved (ID: a1b2c3d4..., DEBUG)
# Tags: ['pytorch', 'cuda', 'memory']
memory_recall
Search across all projects using hybrid search.
Parameters:
query(required): Search query (semantic + keywords)category: Optional category filterlimit: Max results (default 5, max 50)
Example:
memory_recall(
query="CUDA out of memory pytorch",
category="DEBUG",
limit=3
)
# Response: Found 2 memories (global, hybrid + neural rerank):
#
# [1] DEBUG (ID: a1b2c3d4...)
# RuntimeError: CUDA out of memory solved with gradient_checkpointing...
# Tags: pytorch, cuda, memory
# Similarity: 94%
memory_recall_project
Same as memory_recall but scoped to current project only.
memory_delete
Delete a memory by full or partial ID.
Example:
memory_delete(memory_id="a1b2c3d4") # Full ID
memory_delete(memory_id="a1b2") # Partial prefix (must be unambiguous)
memory_update
Update content, category, or tags of an existing memory.
Example:
memory_update(
memory_id="a1b2c3d4",
content="Updated content here",
category="CONFIG",
tags=["new", "tags"]
)
memory_stats
Get memory statistics.
Example:
memory_stats()
# Response: === Memory Statistics (LanceDB) ===
# Total: 47 memories
# Database: 185.7 KB
# ...
# By Category:
# CONFIG: 15
# DEBUG: 12
# ...
memory_health
Get system health and configuration status.
Example:
memory_health()
# Response: === Memory Health Status ===
# Total memories: 47
# Database size: 185.7 KB
# FTS index: ✓ BM25 enabled
# Vector index: ✓ IVF-PQ
# TTL: 365 days
# TTL cleanup: ✓ Active (every 24h)
Hook System (Auto-Save)
The hook system enables automatic memory extraction from agent actions and memory recall at session start for context injection. This is optional but recommended for hands-free learning.
Hooks Overview
| Hook Event | File | Trigger | Purpose |
|---|---|---|---|
| PostToolUse | .factory/hooks/memory-extractor.py |
After Edit/Write/Bash/MultiEdit | Auto-save memory-worthy insights |
| SessionStart | .factory/hooks/session_start_recall.py |
On startup, /resume, /clear, compact |
Inject memory context at session start |
How They Work
1. memory-extractor.py (PostToolUse)
- Triggers after tool executions (Edit, Write, Bash, MultiEdit, MCP tiger tools)
- Analyzes the action using an LLM judge (Gemini Flash)
- Extracts category, content, and tags if memory-worthy
- Checks for duplicates (90% similarity threshold)
- Saves automatically to the same LanceDB database
2. session_start_recall.py (SessionStart)
- Triggers on session events:
startup,resume(/resume),clear(/clear),compact - Retrieves memories for the current project from LanceDB
- Generates a "Project Highlights" summary using Gemini
- Outputs JSON with
additionalContextfield (injected into agent context)
Installation
For Factory/Droid users:
-
Hooks are located in the project folder at
.factory/hooks/:memory-mcp/.factory/hooks/memory-extractor.pymemory-mcp/.factory/hooks/session_start_recall.py
-
Configure in
~/.factory/settings.json:
{
"hooks": {
"PostToolUse": [
{
"matcher": "Edit|Write|Bash|MultiEdit|mcp__tiger__.*",
"hooks": [
{
"type": "command",
"command": "/path/to/memory-mcp/.factory/hooks/memory-extractor.py",
"timeout": 30
}
]
}
],
"SessionStart": [
{
"matcher": "startup|resume|clear|compact",
"hooks": [
{
"type": "command",
"command": "/path/to/memory-mcp/.factory/hooks/session_start_recall.py",
"timeout": 30
}
]
}
]
}
}
Important: Use absolute paths for hook commands. The
$FACTORY_PROJECT_DIRvariable only works when hooks are triggered from within that project directory. For global hooks that should work across all projects, use the full path to where memory-mcp is installed.
Factory/Droid Hook Events Reference
| Event | Matchers | When It Fires |
|---|---|---|
SessionStart |
startup, resume, clear, compact |
New session, /resume, /clear, or context compaction |
PostToolUse |
Tool names (regex) | After any matched tool executes successfully |
PreToolUse |
Tool names (regex) | Before tool execution (can block/modify) |
UserPromptSubmit |
N/A | When user submits a prompt (NOT on slash commands) |
Stop |
N/A | When agent finishes responding |
Notification |
N/A | When agent sends notifications |
Note:
/resumetriggersSessionStartwithresumematcher, NOTUserPromptSubmit. This is a common configuration mistake.
Project-Based Hooks
Hooks are stored in the project folder (version controlled):
memory-mcp/
├── .factory/
│ └── hooks/
│ ├── memory-extractor.py # Auto-save after tool use
│ └── session_start_recall.py # Memory recall at session start
└── server.py
This approach:
- Version controls hooks with the project
- Makes configuration portable (no hardcoded paths)
- Enables team sharing via git
LLM Judge Criteria
The judge saves memories ONLY when they match:
- Bug fix with non-obvious cause/solution
- New coding pattern or architecture insight
- Configuration that took effort
- Error resolution with reusable fix
- Performance optimization
- User preference explicitly stated
It SKIPS:
- Simple file reads/listings
- Trivial edits or formatting
- Status checks
- Actions without learning value
Memory Categories
| Category | When to Use |
|---|---|
PATTERN |
Coding patterns, architectures, design decisions |
CONFIG |
Tool configurations, environment settings |
DEBUG |
Error resolutions, debugging techniques |
PERF |
Performance optimizations |
PREF |
User preferences, coding style |
INSIGHT |
Cross-project learnings |
API |
LLM/external API usage patterns |
AGENT |
Agent design patterns, workflows |
Hook Limits
| Setting | Value | Description |
|---|---|---|
| Rate Limit | 30s | Minimum time between extractions |
| Timeout | 30s | Max execution time |
| Context | 5 messages | Recent transcript context |
Hook Logs
Monitor hook activity:
tail -f ~/.factory/logs/memory-extractor.log
Search Technology
Hybrid Search Pipeline
Memory-MCP uses true hybrid search combining multiple retrieval methods:
Query
│
├─────────────────────────────────┐
│ │
▼ ▼
┌─────────────────┐ ┌─────────────────┐
│ Vector Search │ │ FTS Search │
│ (70% weight) │ │ (30% weight) │
│ Cosine similarity│ │ BM25 keywords │
└────────┬────────┘ └────────┬────────┘
│ │
└───────────┬─────────────┘
│
▼
┌──────────────────┐
│ RRF Fusion │
│ 1/(k + rank) │
└────────┬─────────┘
│
▼
┌──────────────────┐
│ Neural Reranking │
│ CrossEncoder │
│ mxbai-reranker │
└────────┬─────────┘
│
▼
┌──────────────────┐
│ TTL Filter │
│ expires_at > NOW │
└────────┬─────────┘
│
▼
Top K Results
Components
-
Vector Search (70% weight)
- 1024-dimensional embeddings (qwen3-embedding or Gemini)
- Cosine similarity
- Captures semantic meaning
-
BM25 FTS (30% weight)
- Tantivy-based full-text search
- TF-IDF keyword matching
- Catches exact phrases and rare terms
-
RRF Fusion
- Reciprocal Rank Fusion combines results
- Weighted scoring prevents either method dominating
-
Neural Reranking
- CrossEncoder:
mixedbread-ai/mxbai-reranker-base-v2 - BEIR benchmark SOTA (reinforcement learning trained)
- Improves relevance 10-15%
- CrossEncoder:
Performance
| Operation | Time |
|---|---|
| Embedding (GPU) | ~10ms |
| Embedding (CPU) | ~30-50ms |
| Vector Search | 20-30ms |
| FTS Search | 2-5ms |
| RRF Fusion | <1ms |
| Neural Rerank | 20-50ms |
| Total Recall | 50-130ms |
Memory Lifecycle
┌─────────────────────────────────────────────────────────────┐
│ CREATION │
├─────────────────────────────────────────────────────────────┤
│ Source: memory_save() or Auto-Save Hook │
│ ↓ │
│ Embedding Generation (Ollama → Google → Hash fallback) │
│ ↓ │
│ Duplicate Check (90% similarity threshold) │
│ ↓ │
│ Store to LanceDB with TTL (365 days) │
└─────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────┐
│ ACTIVE (365 days) │
├─────────────────────────────────────────────────────────────┤
│ Available for recall │
│ TTL checked on each query │
│ Can be updated via memory_update() │
└─────────────────────────────────────────────────────────────┘
↓
┌─────────────────────────────────────────────────────────────┐
│ EXPIRATION │
├─────────────────────────────────────────────────────────────┤
│ Background cleanup runs every 24 hours │
│ Expired memories deleted automatically │
└─────────────────────────────────────────────────────────────┘
Usage Examples
Basic Usage
# Save a debugging insight
memory_save(
content="[DEBUG] - Python multiprocessing on macOS requires 'spawn' start method. Use: mp.set_start_method('spawn'). Context: ML training. Rationale: 'fork' causes CUDA issues.",
category="DEBUG",
tags=["python", "multiprocessing", "macos", "cuda"]
)
# Search for it later
memory_recall(query="multiprocessing macos cuda")
# Check system health
memory_health()
With Category Filtering
# Only search CONFIG memories
memory_recall(query="database connection", category="CONFIG")
Project-Specific Search
# Search only in current project
memory_recall_project(query="authentication pattern")
Using Summarization
# Let LLM summarize verbose content
memory_save(
content="Very long error log with stack trace...",
category="DEBUG",
summarize=True # LLM extracts key insight
)
Auto-Save Example
With the hook configured, after you fix a bug:
# You run: Edit file to fix ImportError
# Hook automatically saves:
# "[DEBUG] - ImportError: No module named 'xyz' fixed by adding to PYTHONPATH. Context: Package structure issue."
Project ID Migration
If you have existing memories from before v3.7.0, you may have duplicate project IDs in different formats:
git@github.com:owner/repo.git(SSH)https://github.com/owner/repo.git(HTTPS)/home/user/projects/repo(path)
Run the migration script to normalize all git URLs:
# Preview changes (recommended first)
uv run migrate_project_ids.py --dry-run
# Apply migration
uv run migrate_project_ids.py
Example output:
2 memories: git@github.com:wb200/memory-mcp.git
-> github.com/wb200/memory-mcp
✓ Migration complete! Updated 2 memories
After migration, all git URLs use canonical format: github.com/owner/repo
Note: Path-based project IDs (e.g., /home/user/projects/repo) are preserved for backward compatibility with legacy memories.
Testing
Run All Tests
cd memory-mcp
uv run pytest -v
MCP Inspector Testing
Test the server interactively with the MCP Inspector:
# Start the server in a separate terminal
cd memory-mcp
uv run python server.py
# In another terminal, run the inspector
npx @modelcontextprotocol/inspector http://localhost:3000
Or test via stdio:
cd memory-mcp
uv run python -c "
import asyncio
from server import mcp
async def test():
result = await mcp.tools['memory_health']()
print(result)
asyncio.run(test())
"
Test Database
Tests use an isolated database separate from production:
| Variable | Default Location |
|---|---|
LANCEDB_MEMORY_PATH (production) |
~/.memory-mcp/lancedb-memory |
LANCEDB_MEMORY_TEST_PATH (tests) |
./lancedb-memory-test (project folder) |
The test database is automatically created and wiped before each test run. It's excluded from git via .gitignore.
Current Test Results
30 passed in ~23s
Test Suites
| Suite | Tests | Coverage |
|---|---|---|
| TestMemorySave | 7 | Save validation, deduplication |
| TestMemoryRecall | 6 | Search, filtering, project scope |
| TestMemoryUpdate | 3 | Update operations |
| TestMemoryDelete | 3 | Delete by ID, partial match |
| TestMemoryStats | 1 | Statistics |
| TestEmbeddings | 2 | Generation, similarity |
| TestSummarization | 1 | LLM summarization |
| TestConcurrency | 3 | Thread safety |
| TestFullLifecycle | 1 | End-to-end CRUD |
| TestHookIntegration | 2 | Hook configuration |
| TestMCPConfig | 1 | Config validation |
Web Viewer
A beautiful, always-on browser interface for browsing your memory database with advanced filtering and search capabilities.
Features
- 🎨 Color-coded categories - Visual distinction between PATTERN, CONFIG, DEBUG, etc.
- 🔍 Dual search modes - Filter by project AND keyword simultaneously
- 📊 Pagination - Smooth navigation through large memory sets
- 🏷️ Tag display - See all tags and metadata at a glance
- ⚡ Real-time updates - Always reflects current database state
- 🌐 Project filtering - Quickly isolate memories from specific codebases
Quick Start (Manual)
# Install Flask (one-time)
uv add --group optional flask
# Run the viewer
uv run memory-viewer
# Access at http://localhost:5000
⭐ Recommended: Always-On Service
Run the memory viewer as a persistent background service that:
- ✅ Survives terminal closures - No more accidentally killing the viewer
- ✅ Auto-starts on boot - Available immediately after system restart
- ✅ Auto-restarts on crash - Built-in systemd recovery
- ✅ Zero maintenance - Set it and forget it
- ✅ Integrated logging - All output captured in systemd journal
One-command setup:
# Install and start the service
./install-service.sh
# Enable 24/7 always-on mode (survives logout/reboot)
loginctl enable-linger $USER
That's it! Access your memories anytime at http://localhost:5000 🚀
Service Management
# Check status and uptime
systemctl --user status memory-viewer
# Restart after code updates
systemctl --user restart memory-viewer
# View real-time logs
journalctl --user -u memory-viewer -f
# Stop the service
systemctl --user stop memory-viewer
# Uninstall completely
./uninstall-service.sh
Performance Impact
The always-on service is lightweight and designed for 24/7 operation:
| Resource | Usage | Notes |
|---|---|---|
| Memory | ~130MB | Flask app + Python runtime |
| CPU | <1% idle | Only active during page loads |
| Disk | Negligible | Reads from existing LanceDB |
| Network | Local only | Binds to 127.0.0.1:5000 |
Advanced Configuration
See SERVICE.md for:
- Custom port configuration
- Production WSGI server setup (Gunicorn/uWSGI)
- Troubleshooting service issues
- Log rotation and monitoring
- Security considerations
Why Use the Service vs Manual?
| Scenario | Manual Run | Always-On Service |
|---|---|---|
| Quick check | ✅ Perfect | 🔶 Overkill |
| Daily use | 🔶 Annoying to restart | ✅ Always ready |
| Shared machine | ❌ Stops on logout | ✅ Keeps running |
| Development workflow | 🔶 Tab clutter | ✅ Clean workspace |
| Team access | ❌ Unreliable | ✅ Guaranteed uptime |
Bottom line: If you check memories more than once a day, the service pays for itself in convenience.
Troubleshooting
"GOOGLE_API_KEY not found"
export GOOGLE_API_KEY="your-api-key"
# Or add to MCP config env section
"Ollama connection refused"
# Start Ollama
ollama serve
# Or check systemd
sudo systemctl status ollama
"Duplicate detected" too often
Lower the threshold in server.py:
dedup_threshold: float = 0.85 # Try 85% instead of 90%
Hook not triggering
For PostToolUse hooks (memory-extractor):
- Check logs:
tail -f ~/.factory/logs/memory-extractor.log - Verify settings.json has correct
$FACTORY_PROJECT_DIRpath - Ensure you're using tools that match the hook matcher (Edit|Write|Bash|MultiEdit)
For SessionStart hooks (session_start_recall):
- Check debug log:
cat memory-mcp/.factory/hooks/hook-debug.log - The hook triggers on: startup,
/resume,/clear, compact - Verify settings.json has
SessionStartevent with matcherstartup|resume|clear|compact - Ensure hook outputs valid JSON with
hookSpecificOutput.additionalContextfield
Embedding dimension mismatch
Reset database (will lose existing memories):
rm -rf ~/.memory-mcp/lancedb-memory
Health Check
Always start troubleshooting with:
memory_health()
API Reference
Memory Schema
class Memory:
id: str # UUID
content: str # Memory text (FTS indexed)
vector: Vector(1024) # Semantic embedding
category: str # PATTERN|CONFIG|DEBUG|PERF|PREF|INSIGHT|API|AGENT
tags: str # JSON array: '["tag1", "tag2"]'
project_id: str # Git remote URL or cwd
user_id: str | None # Optional
created_at: str # ISO timestamp
updated_at: str # ISO timestamp
expires_at: str # ISO timestamp (TTL)
Config Schema
@dataclass(frozen=True, slots=True)
class Config:
db_path: Path = Path.home() / ".memory-mcp" / "lancedb-memory"
table_name: str = "memories"
embedding_model: str = "qwen3-embedding:0.6b"
embedding_dim: int = 1024
embedding_provider: str = "ollama"
ollama_base_url: str = "http://localhost:11434"
llm_model: str = "gemini-3-flash-preview"
ttl_days: int = 365
dedup_threshold: float = 0.90
fts_weight: float = 0.3
default_limit: int = 5
max_limit: int = 50
FAQ
Q: Can I use this without Ollama?
A: Yes, set EMBEDDING_PROVIDER=google and provide GOOGLE_API_KEY.
Q: Is GPU required?
A: No, but recommended. CPU embeddings are ~3x slower.
Q: What happens if all embedding providers fail?
A: Hash-based fallback ensures saves always work (reduced semantic quality).
Q: How do I backup my memories?
A: Copy ~/.memory-mcp/lancedb-memory/ directory.
Q: Can multiple agents share the same database?
A: Yes, LanceDB supports concurrent access.
Q: Is the hook required?
A: No, it's optional. You can use memory_save() manually.
Contributing
- Fork the repository
- Run tests:
uv run pytest -v - Format code:
uv run ruff format . - Lint:
uv run ruff check . - Submit PR
License
MIT License - See LICENSE file.
Acknowledgments
- LanceDB - Vector database
- Tantivy - Full-text search
- Sentence-Transformers - CrossEncoder reranking
- Ollama - Local embeddings
- Google Gemini - LLM judge & embeddings
- MCP - Model Context Protocol
Version History:
- v3.7.0 - Project ID normalization: git URLs now use canonical format (github.com/owner/repo), migration script for existing memories, eliminates duplicate project fragmentation
- v3.6.0 - Always-on web viewer with systemd service support, linger mode for 24/7 availability, legacy project ID fallback for backward compatibility
- v3.5.0 - Renamed MCP server from
droid-memorytomemory(agent-agnostic), fixedhookEventNamecamelCase bug, silent context injection (removed verbose stderr) - v3.4.0 - Fixed hook configuration: SessionStart event (not UserPromptSubmit) for memory recall on
/resume, JSON output format for context injection, comprehensive hook documentation - v3.3.0 - Project-based hooks, dual hooks (auto-save + session start recall)
- v3.2.0 - SOTA reranker (mxbai-reranker-base-v2), path updates
- v3.1.0 - Tantivy FTS, embedding cache, TTL cleanup
- v3.0.0 - Ollama integration, 1024-dim embeddings
- v2.0.0 - Hook system, LLM judge
- v1.0.0 - Initial release
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。