Memory MCP Server
Enables agents to maintain persistent memory through three-tiered architecture: short-term session context with TTL, long-term user profiles and preferences, and searchable episodic event history with sentiment analysis. Provides comprehensive memory management for personalized AI interactions.
README
Memory MCP Server
A production-ready Model Context Protocol server implementing three-tiered memory architecture for vertical agents.
Overview
The Memory MCP Server provides persistent and session-based memory capabilities through three specialized memory types:
- Short-term Memory: Session context with configurable TTL (default: 30 minutes)
- Long-term Memory: Persistent user profiles, preferences, and demographics
- Episodic Memory: Searchable event history with sentiment analysis and tagging
Architecture
Memory Types
| Type | Persistence | Use Case | TTL |
|---|---|---|---|
| Short-term | In-memory only | Session context, temporary state | Configurable (default 30m) |
| Long-term | Disk storage | User profiles, preferences, demographics | Permanent |
| Episodic | Disk storage | Event history, experiences, interactions | Permanent |
Data Storage
memory-data/
├── long-term.json # User profiles and preferences
└── episodic.json # Event and experience logs
Installation
Prerequisites
- Node.js 16.0 or higher
- npm 7.0 or higher
Setup
-
Clone and build
git clone <repository-url> cd memory-server npm install npm run build -
Configure MCP
Add to your MCP configuration (e.g.,
cline_mcp_settings.json):{ "mcpServers": { "memory-server": { "command": "node", "args": ["./memory-server/build/index.js"], "settings": { "dataDirectory": "./memory-server/memory-data", "defaultTTLMinutes": 30 } } } }
API Reference
Tools
| Tool | Description | Required Parameters |
|---|---|---|
set_short_term_memory |
Store session data with TTL | sessionId, key, value |
get_short_term_memory |
Retrieve session data | sessionId |
set_long_term_memory |
Store user profile data | userId |
get_long_term_memory |
Retrieve user profile | userId |
add_episodic_memory |
Record event/experience | userId, event, context |
get_episodic_memory |
Retrieve user events | userId |
search_episodic_memory |
Search event history | userId, query |
Resources
memory://long-term/{userId}- User profile data (JSON)memory://episodic/{userId}- User event history (JSON)
Prompts
memory_summary- Generate comprehensive user memory summarypersonalization_insights- Extract personalization opportunities
Usage Examples
User Profile Management
// Store user preferences
await server.set_long_term_memory({
userId: "user-123",
demographics: { age: 35, location: "New York" },
preferences: { seating: "poolside", temperature: "cool" }
});
// Record interaction
await server.add_episodic_memory({
userId: "user-123",
event: "Guest requested poolside seating",
context: "Arrived for dinner, asked for poolside table",
outcome: "Seated at requested location",
sentiment: "positive",
tags: ["seating", "dinner"]
});
Session Context
// Store session state
await server.set_short_term_memory({
sessionId: "session-456",
key: "current_order",
value: { items: ["salad", "wine"], table: 12 },
ttlMinutes: 45
});
Data Models
Long-term Memory Structure
{
"userId": {
"demographics": {
"age": "number",
"location": "string",
"occupation": "string"
},
"contact": {
"email": "string",
"phone": "string"
},
"preferences": {
"seating": "string",
"temperature": "string",
"communicationStyle": "string"
},
"lastUpdated": "timestamp"
}
}
Episodic Memory Structure
{
"id": "episodic_{timestamp}_{randomId}",
"userId": "string",
"sessionId": "string",
"event": "string",
"context": "string",
"outcome": "string",
"sentiment": "positive|negative|neutral",
"timestamp": "number",
"tags": ["string"]
}
Development
Commands
npm run build # Build for production
npm run watch # Development mode with file watching
npm run inspector # Run MCP debugging tools
Testing
npm run build # Build first
node test-memory.js # Run functional tests
Production Considerations
Performance
- Memory operations: <10ms
- Disk operations: <50ms (SSD)
- Search operations: <100ms (1000 memories)
- Memory usage: Linear with data volume
Security
- Input validation on all parameters
- Atomic file operations preventing corruption
- No external API dependencies
- Local-only data storage
Reliability
- Graceful degradation when storage unavailable
- Automatic memory cleanup for expired sessions
- Data persistence with automatic recovery
- Comprehensive error handling
Monitoring
- Structured logging for all operations
- Error tracking with diagnostic information
- Data integrity verification on startup
- Performance metrics available
Troubleshooting
Common Issues
Server fails to start
- Verify Node.js version >= 16.0
- Run
npm run buildto compile TypeScript - Check file permissions on
build/index.js
Data not persisting
- Ensure
memory-data/directory is writable - Verify disk space availability
- Check system logs for I/O errors
Memory not found
- Validate
userId/sessionIdformat - Check TTL expiration for short-term memory
- Verify operation sequencing
Debug Mode
DEBUG=memory-server:* node build/index.js
License
MIT License - see LICENSE file for details.
Support
- Issues: Create GitHub issue
- Email: cbuntingde@gmail.com
- Documentation: Refer to inline code comments
Enterprise-grade production implementation with comprehensive error handling, type safety, and operational reliability.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。