Memos MCP Server
Enables AI assistants to interact with Memos instances for knowledge management. Supports searching, creating, updating, and retrieving memos with markdown content, tags, and visibility controls.
README
Memos MCP Server
An MCP (Model Context Protocol) server that provides tools for interacting with a Memos instance. This server allows AI assistants to search, create, and update memos through the Memos API.
Features
- Search Memos: Search for memos with filters like creator, tags, visibility, and content
- Create Memos: Create new memos with markdown support
- Update Memos: Update existing memos (content, visibility, pinned status)
- Get Memo: Retrieve a specific memo by UID
Installation
- Clone this repository:
git clone <repository-url>
cd memos_mcp
- Install dependencies:
Using uv (recommended)
uv sync
Using pip
pip install -r requirements.txt
Configuration
Set the following environment variables:
MEMOS_BASE_URL: The base URL of your Memos instance (default:http://localhost:5230)MEMOS_API_TOKEN: Your Memos API authentication token (optional for public instances)
Getting an API Token
- Log into your Memos instance
- Go to Settings → Access Tokens
- Create a new access token
- Copy the token and set it as the
MEMOS_API_TOKENenvironment variable
Example:
export MEMOS_BASE_URL="https://memos.example.com"
export MEMOS_API_TOKEN="your-token-here"
Usage
Running the Server
Using uvx (no installation required)
# Run directly with uvx
uvx --from . memos-mcp
Using uv after installation
# After running 'uv sync'
uv run memos-mcp
Using FastMCP directly
fastmcp run server.py
Programmatic usage
from server import mcp
# The server is ready to use
Available Tools
1. search_memos
Search for memos with optional filters.
Parameters:
query(optional): Text to search for in memo contentcreator_id(optional): Filter by creator user IDtag(optional): Filter by tag namevisibility(optional): Filter by visibility (PUBLIC, PROTECTED, PRIVATE)limit(default: 10): Maximum number of resultsoffset(default: 0): Number of results to skip
Example:
result = await search_memos(query="meeting notes", limit=5)
2. create_memo
Create a new memo.
Parameters:
content: The content of the memo (supports Markdown)visibility(default: PRIVATE): Visibility level (PUBLIC, PROTECTED, PRIVATE)
Example:
result = await create_memo(
content="# Meeting Notes\n\n- Discuss project timeline\n- Review budget",
visibility="PRIVATE"
)
3. update_memo
Update an existing memo.
Parameters:
memo_uid: The UID of the memo to updatecontent(optional): New content for the memovisibility(optional): New visibility levelpinned(optional): Whether to pin the memo
Example:
result = await update_memo(
memo_uid="abc123",
content="Updated content",
pinned=True
)
4. get_memo
Get a specific memo by its UID.
Parameters:
memo_uid: The UID of the memo to retrieve
Example:
result = await get_memo(memo_uid="abc123")
Integration with MCP Clients
Claude Desktop
Add to your Claude Desktop configuration file:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Using uvx (recommended - no installation needed)
{
"mcpServers": {
"memos": {
"command": "uvx",
"args": ["--from", "/path/to/memos_mcp", "memos-mcp"],
"env": {
"MEMOS_BASE_URL": "http://localhost:5230",
"MEMOS_API_TOKEN": "your-token-here"
}
}
}
}
Using uv (after installation)
{
"mcpServers": {
"memos": {
"command": "uv",
"args": ["run", "--directory", "/path/to/memos_mcp", "memos-mcp"],
"env": {
"MEMOS_BASE_URL": "http://localhost:5230",
"MEMOS_API_TOKEN": "your-token-here"
}
}
}
}
Using Python directly
{
"mcpServers": {
"memos": {
"command": "python",
"args": ["-m", "fastmcp", "run", "/path/to/memos_mcp/server.py"],
"env": {
"MEMOS_BASE_URL": "http://localhost:5230",
"MEMOS_API_TOKEN": "your-token-here"
}
}
}
}
API Reference
This server is built on the Memos API v1. The API follows Google's API Improvement Proposals (AIPs) design guidelines.
API Endpoints Used
GET /api/v1/memos- List/search memosPOST /api/v1/memos- Create a memoGET /api/v1/memos/{uid}- Get a specific memoPATCH /api/v1/memos/{uid}- Update a memo
Authentication
The server supports Bearer token authentication. Include your access token in the Authorization header:
Authorization: Bearer your-token-here
Development
Running Tests
pytest
Code Structure
server.py: Main MCP server implementation with all toolsrequirements.txt: Python dependencies
About Memos
Memos is a lightweight, self-hosted memo hub with knowledge management and social networking features. Learn more at:
- Website: https://www.usememos.com/
- GitHub: https://github.com/usememos/memos
License
MIT License - see LICENSE file for details
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。