Memos MCP Server
Enables AI agents to interact with Memos instances for personal note-taking and knowledge management. Supports creating, searching, updating, and organizing memos with tags, dates, and visibility settings through natural language.
README
MCP Memos Server
A Model Context Protocol (MCP) server that provides AI agents with access to your Memos instance. This server allows AI models to read, write, search, and organize your memos through a standardized interface.
Features
🔧 Tools (Actions)
- set_api_key - 🔑 Set your Memos API key (required first step)
- create_memo - Create new memos with content, tags, and visibility settings
- get_memo - Retrieve specific memos by ID
- update_memo - Modify existing memo content and settings
- delete_memo - Remove memos from your instance
- search_memos - Search through memo content with text queries
- get_memos_by_date - Find memos created on specific dates
- get_memos_by_date_range - Get memos within date ranges
- list_recent_memos - Access your most recent memos
📚 Resources (Data Access)
memo://recent- Access recent memosmemo://search/{query}- Search results for specific queriesmemo://date/{YYYY-MM-DD}- Memos from specific datesmemo://memo/{memo_id}- Individual memo content
Prerequisites
- A running Memos server (self-hosted or cloud)
- A Memos API key (generated in Settings → Access Tokens) - provided by users at runtime
- Docker (optional, but recommended)
- Python 3.11+ (if running without Docker)
Quick Start with Docker
-
Clone or create the project directory:
git clone <repository> mcp-memos-server cd mcp-memos-server -
Create environment file:
cp .env.example .env -
Edit
.envwith your Memos configuration:# Required settings MEMOS_URL=https://your-memos-server.com # MEMOS_API_KEY is now optional - users provide it at runtime # Optional settings DEFAULT_VISIBILITY=PRIVATE MAX_SEARCH_RESULTS=50 TIMEOUT=30 -
Run with Docker Compose:
docker-compose up -d -
Test the connection:
docker-compose logs mcp-memos-server
Installation without Docker
-
Install Python dependencies:
pip install -r requirements.txt -
Set environment variables:
export MEMOS_URL="https://your-memos-server.com" # MEMOS_API_KEY is optional - users will provide it at runtime -
Run the server:
python server.py
Configuration
Required Environment Variables
| Variable | Description | Example |
|---|---|---|
MEMOS_URL |
Base URL of your Memos server | https://memos.example.com |
Optional Environment Variables (for backwards compatibility)
| Variable | Description | Example |
|---|---|---|
MEMOS_API_KEY |
API key from Memos Settings → Access Tokens (optional - users can provide at runtime) | memos_xxx... |
Optional Environment Variables
| Variable | Default | Description |
|---|---|---|
DEFAULT_VISIBILITY |
PRIVATE |
Default visibility for new memos (PRIVATE, PROTECTED, PUBLIC) |
MAX_SEARCH_RESULTS |
50 |
Maximum number of search results to return |
TIMEOUT |
30 |
HTTP request timeout in seconds |
Getting Your Memos API Key
- Open your Memos web interface
- Go to Settings → Access Tokens
- Create a new access token
- Copy the generated token (starts with
memos_)
Using with Claude Desktop
Add this to your Claude Desktop MCP configuration:
{
"mcpServers": {
"memos": {
"command": "docker",
"args": [
"run", "--rm", "-i",
"--env-file", "/path/to/your/.env",
"mcp-memos-server"
]
}
}
}
Or if running locally:
{
"mcpServers": {
"memos": {
"command": "python",
"args": ["/path/to/mcp-memos-server/server.py"],
"env": {
"MEMOS_URL": "https://your-memos-server.com"
// API key no longer needed here - users provide it at runtime
}
}
}
}
Usage Instructions
🔑 Setting Your API Key (Required First Step)
Before using any memo operations, you must provide your Memos API key using the set_api_key tool:
AI: I need to set up access to your Memos server first. Please use the set_api_key tool.
User: set_api_key
Tool Parameters: {
"api_key": "memos_your_actual_api_key_here"
}
Response: ✅ API key set successfully and connection verified
Important Security Notes:
- Your API key is only stored in memory for the current session
- The key is never logged or persisted to disk
- Each time you restart the MCP server, you'll need to set the API key again
- This is much safer than hardcoding the key in configuration files
Getting Your API Key
- Open your Memos web interface
- Go to Settings → Access Tokens
- Create a new access token
- Copy the generated token (starts with
memos_) - Use it with the
set_api_keytool
Usage Examples
Creating Memos
AI: I'll create a memo about today's meeting notes.
Tool: create_memo
Args: {
"content": "# Team Meeting - 2024-01-15\n\n- Discussed Q1 goals\n- Assigned tasks for sprint\n- Next meeting: Jan 22",
"visibility": "PRIVATE",
"tags": ["meeting", "team", "Q1"]
}
Searching Memos
AI: Let me search for memos about "project planning"
Tool: search_memos
Args: {
"query": "project planning",
"limit": 10
}
Finding Memos by Date
AI: Show me all memos from yesterday
Tool: get_memos_by_date
Args: {
"date_str": "2024-01-14",
"limit": 20
}
Accessing Resources
AI: Let me check your recent memos
Resource: memo://recent
AI: I'll search for memos about "vacation"
Resource: memo://search/vacation
API Documentation
Tools
set_api_key 🔑
Sets your Memos API key for the current session. This must be called first before using any other memo operations.
Parameters:
api_key(string, required): Your Memos API key from Settings → Access Tokens
Returns: Success/failure message with connection verification
Security: The API key is stored only in memory and never persisted to disk.
create_memo
Creates a new memo in your Memos instance.
Parameters:
content(string, required): Memo content (Markdown supported)visibility(string, optional):PRIVATE,PROTECTED, orPUBLICtags(array, optional): List of tags to add
Returns: Success message with memo ID
search_memos
Searches through your memos by content.
Parameters:
query(string, required): Search querylimit(integer, optional): Max results (default: 20)
Returns: List of matching memos
get_memos_by_date
Gets memos created on a specific date.
Parameters:
date_str(string, required): Date inYYYY-MM-DDformatlimit(integer, optional): Max results (default: 20)
Returns: List of memos from that date
Resources
Resources provide read-only access to your memo data:
memo://recent- Recent memosmemo://search/{query}- Search resultsmemo://date/{YYYY-MM-DD}- Memos by datememo://memo/{memo_id}- Specific memo
Troubleshooting
Connection Issues
- Verify
MEMOS_URLis correct (no trailing slash) - Check that your API key is valid and has proper permissions
- Ensure your Memos server is accessible from the MCP server
Docker Issues
- Check logs:
docker-compose logs mcp-memos-server - Verify environment variables:
docker-compose config - Restart containers:
docker-compose restart
Permission Errors
- Ensure your API key has read/write permissions
- Check that your user account has access to the memos you're trying to access
Development
Running Tests
python test_server.py
Debugging
Enable debug logging by setting the environment variable:
export MCP_LOG_LEVEL=DEBUG
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
License
This project is licensed under the MIT License - see the LICENSE file for details.
Security Notes
- ✅ Enhanced Security: API keys are no longer stored in configuration files
- 🔑 Runtime API Key: Users provide API keys dynamically via the
set_api_keytool - 📝 Memory Only: API keys are stored only in memory and never persisted to disk
- 🔄 Session-Based: API key must be set again each time the MCP server restarts
- 🐳 Container Security: The Docker container runs as a non-root user
- 🔒 HTTPS: All communication with Memos uses HTTPS (if your server supports it)
- ❌ Never Commit Secrets: Never commit API keys to version control
Support
For issues and feature requests:
- Check the troubleshooting section
- Look for existing issues in the repository
- Create a new issue with detailed information about your setup and the problem
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。