memvid-mcp
An MCP server that provides a persistent memory layer for AI agents by wrapping the memvid CLI. It enables users to manage memory files, perform hybrid searches, and conduct RAG-based question answering through 40 specialized tools.
README
memvid-mcp
MCP (Model Context Protocol) server for memvid - a memory layer for AI agents.
This server wraps the memvid Rust CLI, exposing 40 tools for persistent memory management with hybrid search (lexical + vector), temporal indexing, knowledge graphs, and RAG capabilities.
Use Cases
- Agent Memory: Give AI agents persistent memory across sessions with semantic search and temporal awareness
- Document Intelligence: Ingest documents, code, and web content with automatic entity extraction and fact tracking
- Knowledge Base: Build searchable knowledge bases with hybrid lexical/vector search and knowledge graph relationships
- Audit & Compliance: Track information sources with citation generation and audit reports
- Session Replay: Record and replay agent sessions for debugging and analysis
Prerequisites
- Node.js 18+
- memvid CLI binary (see memvid for installation)
- Optional: Embedder configuration for vector search (embedder.toml)
- Optional: LLM configuration for RAG (llm.toml)
Installation
From Source
git clone https://github.com/Tapiocapioca/memvid-mcp.git
cd memvid-mcp
npm install
npm run build
Verify Installation
# Test the server starts
node dist/index.js
# Should output: "memvid-mcp server started"
# Press Ctrl+C to exit
Configuration
Environment Variables
| Variable | Default | Description |
|---|---|---|
MEMVID_PATH |
memvid |
Path to the memvid binary |
MEMVID_LOG_LEVEL |
warning |
Log level: debug, info, warning, error |
MEMVID_VERBOSE |
0 |
Set to 1 for verbose CLI output |
MCP Client Setup
VS Code (Copilot)
Add to your VS Code MCP settings:
{
"servers": {
"memvid": {
"command": "node",
"args": ["/path/to/memvid-mcp/dist/index.js"],
"env": {
"MEMVID_PATH": "/path/to/memvid"
}
}
}
}
Claude Desktop
Add to claude_desktop_config.json:
{
"mcpServers": {
"memvid": {
"command": "node",
"args": ["/path/to/memvid-mcp/dist/index.js"],
"env": {
"MEMVID_PATH": "/path/to/memvid"
}
}
}
}
Cursor
Add to MCP settings:
{
"memvid": {
"command": "node",
"args": ["/path/to/memvid-mcp/dist/index.js"],
"env": {
"MEMVID_PATH": "/path/to/memvid"
}
}
}
OpenCode
Add to opencode.json:
{
"mcp": {
"memvid": {
"type": "stdio",
"command": "node",
"args": ["/path/to/memvid-mcp/dist/index.js"],
"env": {
"MEMVID_PATH": "/path/to/memvid"
}
}
}
}
Security Considerations
Path Validation
The server implements multiple layers of path security:
- Path Traversal Protection: Blocks
..patterns - System Path Blocklist: Prevents access to sensitive directories (
/etc/,/proc/,\windows\, etc.) - MCP Roots Validation: Respects client-provided roots boundaries (when supported by client)
Encryption
Memory files can be encrypted using AES-256-GCM:
memvid_lock { "file": "data.mv2", "output": "data.mv2e", "password": "secret" }
memvid_unlock { "file": "data.mv2e", "output": "data.mv2", "password": "secret" }
Recommendations
- Store memory files in dedicated directories
- Use encrypted files (
.mv2e) for sensitive data - Configure MCP roots in your client to restrict file access
- Use separate memory files per project/context
Available Tools (40)
Lifecycle (5 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_create |
Create a new .mv2 memory file | write |
memvid_open |
Open and display file metadata | read-only |
memvid_stats |
Show detailed statistics (frame count, index sizes) | read-only |
memvid_verify |
Verify file integrity with optional deep check | read-only |
memvid_doctor |
Diagnose and repair corrupted indexes | destructive |
Content Management (7 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_put |
Add content from file/directory with optional embeddings | write |
memvid_put_many |
Batch add with progress tracking | write |
memvid_view |
View frame content by ID | read-only |
memvid_update |
Replace frame content | destructive |
memvid_delete |
Delete a frame | destructive |
memvid_correct |
Amend frame with audit trail | write |
memvid_api_fetch |
Fetch URL content and add to memory | network |
Search (5 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_find |
Hybrid/lexical/vector search | read-only |
memvid_vec_search |
Vector-only semantic search | read-only |
memvid_ask |
RAG question answering | read-only |
memvid_timeline |
Chronological frame view | read-only |
memvid_when |
Temporal search (find when something was mentioned) | read-only |
Analysis (6 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_audit |
Generate audit report with citations | read-only |
memvid_debug_segment |
Debug internal index segments | read-only |
memvid_export |
Export to JSON/CSV/JSONL | write |
memvid_tables |
List internal SQLite tables | read-only |
memvid_schema |
Schema inference and summary | read-only |
memvid_models |
List available embedding models | read-only |
Knowledge Graph (6 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_enrich |
NER entity extraction | write |
memvid_memories |
Memory card operations | read-only |
memvid_state |
Show current memory state | read-only |
memvid_facts |
Fact extraction and listing | read-only |
memvid_follow |
Traverse entity relationships | read-only |
memvid_who |
Entity lookup | read-only |
Session Management (5 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_session |
Start/stop/list/replay sessions | write |
memvid_binding |
Memory binding operations | destructive |
memvid_status |
System status (version, model status) | read-only |
memvid_sketch |
SimHash sketch operations | write |
memvid_nudge |
Trigger background processing | write |
Encryption (2 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_lock |
Encrypt memory file (AES-256-GCM) | write |
memvid_unlock |
Decrypt memory file | write |
Utility (4 tools)
| Tool | Description | Annotations |
|---|---|---|
memvid_process_queue |
Process pending operations | write |
memvid_verify_single_file |
Verify single frame integrity | read-only |
memvid_config |
Show current configuration | read-only |
memvid_version |
Print version information | read-only |
Example Workflows
Basic Memory Setup
# 1. Create a new memory file
memvid_create { "file": "project.mv2" }
# 2. Ingest documentation
memvid_put {
"file": "project.mv2",
"input": "./docs",
"recursive": true,
"embed": true # Generate vector embeddings
}
# 3. Check statistics
memvid_stats { "file": "project.mv2" }
Search and Retrieval
# Hybrid search (lexical + vector)
memvid_find {
"file": "project.mv2",
"query": "authentication flow",
"mode": "hybrid",
"limit": 5
}
# Semantic search only
memvid_vec_search {
"file": "project.mv2",
"query": "how to handle user sessions"
}
# RAG question answering
memvid_ask {
"file": "project.mv2",
"question": "What authentication methods are supported?"
}
Knowledge Graph Operations
# Extract entities from all frames
memvid_enrich { "file": "project.mv2", "all": true }
# Look up an entity
memvid_who { "file": "project.mv2", "query": "OAuth" }
# Follow entity relationships
memvid_follow {
"file": "project.mv2",
"entity": "AuthService",
"hops": 2
}
Audit and Export
# Generate audit report with sources
memvid_audit {
"file": "project.mv2",
"query": "security requirements",
"include_snippets": true
}
# Export for backup
memvid_export {
"file": "project.mv2",
"output": "backup.json",
"format": "json"
}
Session Recording
# Start recording a session
memvid_session { "file": "project.mv2", "start": "debug-session-1" }
# ... agent interactions ...
# Stop recording
memvid_session { "file": "project.mv2", "stop": true }
# Replay later
memvid_session { "file": "project.mv2", "replay": "debug-session-1" }
Embedder Configuration
For vector search capabilities, create ~/.config/memvid/embedder.toml:
[embedder]
provider = "openai"
model = "text-embedding-3-large"
api_key_env = "OPENAI_API_KEY"
dimensions = 3072
Or for A4F/OpenRouter compatible APIs:
[embedder]
provider = "openai"
model = "provider-3/text-embedding-3-large"
base_url = "https://api.a]4f.co/v1"
api_key_env = "A4F_API_KEY"
Performance Characteristics
| Operation | Typical Latency | Notes |
|---|---|---|
memvid_create |
< 100ms | Creates empty SQLite database |
memvid_put (single file) |
100-500ms | Depends on file size |
memvid_put (with embed) |
500ms-2s | Includes API call for embedding |
memvid_find (lexical) |
< 50ms | Tantivy full-text search |
memvid_find (hybrid) |
100-500ms | Combines lexical + vector |
memvid_ask (RAG) |
1-5s | Includes LLM API call |
Timeouts are configured per operation type:
- Default: 120 seconds
- Heavy operations (batch put): 300 seconds
- RAG operations: 180 seconds
Development
npm run dev # Run with tsx (hot reload)
npm run build # Compile TypeScript
npm start # Run compiled version
npm run clean # Remove dist/
Troubleshooting
Server won't start
- Check Node.js version:
node --version(requires 18+) - Verify build:
npm run build - Check memvid binary:
memvid --version
"MEMVID_PATH not found"
Set the environment variable to the full path:
export MEMVID_PATH=/path/to/memvid
# or on Windows
set MEMVID_PATH=C:\path\to\memvid.exe
Vector search returns no results
- Check embeddings were generated:
memvid_statsshowsvector_count > 0 - Verify embedder config:
memvid_config - Re-ingest with embeddings:
memvid_put { ..., "embed": true }
Path validation errors
The server validates all paths against:
- Path traversal patterns (
..) - System directory blocklist
- MCP roots (if client supports roots capability)
Ensure your paths are within allowed directories.
License
MIT
推荐服务器
Baidu Map
百度地图核心API现已全面兼容MCP协议,是国内首家兼容MCP协议的地图服务商。
Playwright MCP Server
一个模型上下文协议服务器,它使大型语言模型能够通过结构化的可访问性快照与网页进行交互,而无需视觉模型或屏幕截图。
Magic Component Platform (MCP)
一个由人工智能驱动的工具,可以从自然语言描述生成现代化的用户界面组件,并与流行的集成开发环境(IDE)集成,从而简化用户界面开发流程。
Audiense Insights MCP Server
通过模型上下文协议启用与 Audiense Insights 账户的交互,从而促进营销洞察和受众数据的提取和分析,包括人口统计信息、行为和影响者互动。
VeyraX
一个单一的 MCP 工具,连接你所有喜爱的工具:Gmail、日历以及其他 40 多个工具。
graphlit-mcp-server
模型上下文协议 (MCP) 服务器实现了 MCP 客户端与 Graphlit 服务之间的集成。 除了网络爬取之外,还可以将任何内容(从 Slack 到 Gmail 再到播客订阅源)导入到 Graphlit 项目中,然后从 MCP 客户端检索相关内容。
Kagi MCP Server
一个 MCP 服务器,集成了 Kagi 搜索功能和 Claude AI,使 Claude 能够在回答需要最新信息的问题时执行实时网络搜索。
e2b-mcp-server
使用 MCP 通过 e2b 运行代码。
Neon MCP Server
用于与 Neon 管理 API 和数据库交互的 MCP 服务器
Exa MCP Server
模型上下文协议(MCP)服务器允许像 Claude 这样的 AI 助手使用 Exa AI 搜索 API 进行网络搜索。这种设置允许 AI 模型以安全和受控的方式获取实时的网络信息。